The double-edged sword: increased hemolysis following the addition of an oxygenator to the Berlin heart for respiratory support
DOI:
https://doi.org/10.18203/2349-3291.ijcp20252608Keywords:
Ventricular assist device, Berlin heart, Oxygenator, HemolysisAbstract
Integrating oxygenators into Berlin heart ventricular assist devices (VADs) for pediatric patients with heart failure and respiratory compromise can be lifesaving but may lead to significant complications, including increased hemolysis. We present two pediatric cases that highlight the challenges of oxygenator use in Berlin heart VADs, focusing on hemolysis, clinical interventions, and patient outcomes. In both cases, the integration of an oxygenator resulted in elevated plasma-free hemoglobin and bilirubin levels, indicative of hemolysis. Following the removal of the oxygenator, these laboratory abnormalities resolved, and clinical status improved. These cases underscore the potential risks associated with oxygenator integration into Berlin Heart VAD circuits and emphasize the importance of close monitoring, timely recognition of hemolysis, and individualized decision-making regarding the duration of oxygenator use.
Metrics
References
Humpl T, Furness S, Gruenwald C, Hyslop C, Van Arsdell G. The Berlin Heart EXCOR Pediatrics-The SickKids Experience 2004-2008. Artificial Organs. 2010;34(12):1082-6. DOI: https://doi.org/10.1111/j.1525-1594.2009.00990.x
Nelson-McMillan K, Ravekes WJ, Thompson WR, Brown KM, Wolff L, Wadia RS, et al. Membrane oxygenator use with biventricular assist device: facilitation of support and lung recovery. World J Pediat Congenital Heart Surg. 2016;9(1):105-9. DOI: https://doi.org/10.1177/2150135116668832
Deshpande SR, Desai M, Sinha P, Kanter J, Yerebakan C. Inflow cannula obstruction in Berlin Heart Excor and novel extracorporeal membrane oxygenation cannulation for rescue. Int J Artif Organs. 2020;43(9):625-8. DOI: https://doi.org/10.1177/0391398820901828
Garcia-Guereta L, Cabo J, De La Oliva P, Villar MA, Bronte LD, Goldman L, et al. Ventricular assist device application with the intermediate use of a membrane oxygenator as a bridge to pediatric heart transplantation. J Heart Lung Transplantat. 2009;28(7):740-2. DOI: https://doi.org/10.1016/j.healun.2009.04.018
Townsend ML, Sadat-Hossieny S, Latifi SQ, Boyle G, Phillips A. Temporary Veno-Venous ECMO for acute respiratory illness in Pediatric Berlin Heart Patient. World J Pediat Congen Heart Surg. 2021;13(4):510-1. DOI: https://doi.org/10.1177/21501351211062823
Deutsch S, Tarbell JM, Manning KB, Rosenberg G, Fontaine AA. Experimental Fluid Mechanics Of Pulsatile Artificial Blood Pumps. Ann Rev Fluid Mechan. 2006;38(1):65-86. DOI: https://doi.org/10.1146/annurev.fluid.38.050304.092022
Sohrabi S, Liu Y. A cellular model of Shear-Induced hemolysis. Artificial Organs. 2017;41(9):E80-91. DOI: https://doi.org/10.1111/aor.12832
Dufour N, Radjou A, Thuong M. Hemolysis and plasma free hemoglobin during extracorporeal membrane oxygenation support: From clinical implications to laboratory details. ASAIO J. 2019;66(3):239-46. DOI: https://doi.org/10.1097/MAT.0000000000000974
Dalton HJ, Cashen K, Reeder RW, Berg RA, Shanley TP, Newth CJ, et al. Hemolysis during pediatric extracorporeal membrane oxygenation: Associations with circuitry, complications, and mortality. Pediatric Critical Care Medic. 2018;19(11):1067-76. DOI: https://doi.org/10.1097/PCC.0000000000001709
Han D, Zhang J, He G, Griffith BP, Wu ZJ. Computational fluid dynamics‐based design and in vitro characterization of a novel pediatric pump‐Lung. Artificial Organs. 2023;48(2):130-40. DOI: https://doi.org/10.1111/aor.14665