Application of array comparative genomic hybridization in clinical diagnostics of intellectual disability/developmental delay in children

Authors

  • Komal Uppal Division of Genetics and Metabolism, Department of Pediatrics, Maulana Azad Medical College (Delhi University), Delhi, India
  • Lakshay Rana Division of Genetics and Metabolism, Department of Pediatrics, Maulana Azad Medical College (Delhi University), Delhi, India
  • Sunil Kumar Polipalli Division of Genetics and Metabolism, Department of Pediatrics, Maulana Azad Medical College (Delhi University), Delhi, India
  • Somesh Kumar Division of Genetics and Metabolism, Department of Pediatrics, Maulana Azad Medical College (Delhi University), Delhi, India
  • Ankur Jindal Division of Genetics and Metabolism, Department of Pediatrics, Maulana Azad Medical College (Delhi University), Delhi, India
  • Seema Kapoor Division of Genetics and Metabolism, Department of Pediatrics, Maulana Azad Medical College (Delhi University), Delhi 110002.

DOI:

https://doi.org/10.18203/2349-3291.ijcp20233608

Keywords:

Comparative genomic hybridization, Array-CGH, Intellectual disability

Abstract

Background: This study was designed to analyze and evaluate the potential pathogenic genomic imbalance in children with unexplained intellectual disability (ID) and/or developmental delay (DD) and its association with phenotypes, and to investigate the value of array-based comparative genomic hybridization (array-CGH).

Methods: A total of 72 Children with ID/DD were evaluated by array-CGH for detection of genomic copy number variations (CNVs).

Results: The results of the array-CGH revealed that 10(14%) of the 72 patients had pathogenic CNVs, in that six cases had pathogenic CNV in a single chromosome, 2 cases had multiple microdeletions and 2 cases had combined microdeletion and microduplication, 2 cases had pathogenic CNVs in chromosome 1p36 and Xq28 region. One case had variation of unknown significance in chromosome region 15q11.2. Large bands of copy neutral loss of heterozygosity were detected in 2 cases comprising more than 10% of genome.

Conclusions: Array-CGH being a high-throughput and rapid tool, allows for the etiological diagnosis in some of the children with unexplained ID/DD.

Metrics

Metrics Loading ...

References

Shevell M, Ashwal S, Donley D, Flint J, Gingold M, Hirtz D, et al. Practice parameter: evaluation of the child with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and The Practice Committee of the Child Neurology Society. Neurology. 2003;60(3):367-80.

Schalock RL, Verdugo MA, Gomez LE. Evidence-based practices in the field of intellectual and developmental disabilities: an international consensus approach. Eval Program Plann. 2011;34 (3):273-82.

Shevell M. Global developmental delay and mental retardation or intellectual disability: conceptualization, evaluation, and etiology. Pediatr Clin North Am. 2008;55(5):1071-84.

Battaglia A, Carey JC. Diagnostic evaluation of developmental delay/mental retardation: An overview. Am J Med Genet C Semin Med Genet. 2003;117C(1):3-14.

Rauch A, Hoyer J, Guth S, Zweier C, Kraus C, Becker C, et al. Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet A. 2006;140(19):2063-74.

Moeschler JB, Shevell M, American Academy of Pediatrics Committee on Genetics. Clinical genetic evaluation of the child with mental retardation or developmental delays. Pediatrics. 2006;117(6):2304-16.

Shevell MI. A “global” approach to global developmental delay and intellectual disability? Dev Med Child Neurol. 2011;53(2):105-6.

Molin A-M, Andrieux J, Koolen DA, Malan V, Carella M, Colleaux L, et al. A novel microdeletion syndrome at 3q13.31 characterised by developmental delay, postnatal overgrowth, hypoplastic male genitals, and characteristic facial features. J Med Genet. 2012;49(2):104-9.

Smith AC, Mc Gavran L, Robinson J, Waldstein G, Macfarlane J, Zonona J, et al. Interstitial deletion of (17)(p11.2p11.2) in nine patients. Am J Med Genet. 1986;24(3):393-414.

Moeschler JB, Amato RS, Brewster T, Burke L, Dinulos MB, Smith R, et al. Improving genetic health care: a Northern New England pilot project addressing the genetic evaluation of the child with developmental delays or intellectual disability. Am J Med Genet C Semin Med Genet. 2009;151C(3):241-54.

Michelson DJ, Shevell MI, Sherr EH, Moeschler JB, Gropman AL, Ashwal S. Evidence report: Genetic and metabolic testing on children with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2011;77(17):1629-35.

Sharma P, Gupta N, Chowdhury MR, Sapra S, Ghosh M, Gulati S, et al. Application of chromosomal microarrays in the evaluation of intellectual disability/global developmental delay patients - A study from a tertiary care genetic centre in India. Gene. 2016;590(1):109-19.

Boggula VR, Agarwal M, Kumar R, Awasthi S, Phadke SR. Recurrent benign copy number variants & issues in interpretation of variants of unknown significance identified by cytogenetic microarray in Indian patients with intellectual disability. Indian J Med Res. 2015;142(6):699-712.

Coulter ME, Miller DT, Harris DJ, Hawley P, Picker J, Roberts AE, et al. Chromosomal microarray testing influences medical management. Genet Med Off J Am Coll Med Genet. 2011;13(9):770-6.

Riggs ER, Wain KE, Riethmaier D, Smith-Packard B, Faucett WA, Hoppman N, et al. Chromosomal microarray impacts clinical management. Clin Genet. 2014;85(2):147-53.

Hochstenbach R, van Binsbergen E, Engelen J, Nieuwint A, Polstra A, Poddighe P, et al. Array analysis and karyotyping: workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherlands. Eur J Med Genet. 2009;52(4):161-9.

Siggberg L, Ala-Mello S, Jaakkola E, Kuusinen E, Schuit R, Kohlhase J, et al. Array CGH in molecular diagnosis of mental retardation - A study of 150 Finnish patients. Am J Med Genet A. 2010;152A(6):1398-410.

Bruno DL, Ganesamoorthy D, Schoumans J, Bankier A, Coman D, Delatycki M, et al. Detection of cryptic pathogenic copy number variations and constitutional loss of heterozygosity using high resolution SNP microarray analysis in 117 patients referred for cytogenetic analysis and impact on clinical practice. J Med Genet. 2009;46(2):123-31.

Friedman J, Adam S, Arbour L, Armstrong L, Baross A, Birch P, et al. Detection of pathogenic copy number variants in children with idiopathic intellectual disability using 500 K SNP array genomic hybridization. BMC Genomics. 2009;10:526.

McMullan DJ, Bonin M, Hehir-Kwa JY, de Vries BBA, Dufke A, Rattenberry E, et al. Molecular karyotyping of patients with unexplained mental retardation by SNP arrays: a multicenter study. Hum Mutat. 2009;30(7):1082-92.

Reijnders MRF, Zachariadis V, Latour B, Jolly L, Mancini GM, Pfundt R, et al. De Novo Loss-of-Function Mutations in USP9X Cause a Female-Specific Recognizable Syndrome with Developmental Delay and Congenital Malformations. Am J Hum Genet. 2016;98(2):373-81.

Homan CC, Kumar R, Nguyen LS, Haan E, Raymond FL, Abidi F, et al. Mutations in USP9X are associated with X-linked intellectual disability and disrupt neuronal cell migration and growth. Am J Hum Genet. 2014;94(3):470-8.

Risheg H, Pasion R, Sacharow S, Proud V, Immken L, Schwartz S, et al. Clinical comparison of overlapping deletions of 19p13.3. Am J Med Genet A. 2013;161A(5):1110-6.

Rosenfeld JA, Crolla JA, Tomkins S, Bader P, Morrow B, Gorski J, et al. Refinement of causative genes in monosomy 1p36 through clinical and molecular cytogenetic characterization of small interstitial deletions. Am J Med Genet A. 2010;152A(8):1951-9.

Swinkels MEM, Simons A, Smeets DF, Vissers LE, Veltman JA, Pfundt R, et al. Clinical and cytogenetic characterization of 13 Dutch patients with deletion 9p syndrome: Delineation of the critical region for a consensus phenotype. Am J Med Genet A. 2008;146A(11):1430-8.

Vulto-van Silfhout AT, de Brouwer AFM, de Leeuw N, Obihara CC, Brunner HG, de Vries BBA. A 380-kb Duplication in 7p22.3 Encompassing the LFNG Gene in a Boy with Asperger Syndrome. Mol Syndromol. 2012;2(6):245-50.

Nevado J, Mergener R, Palomares-Bralo M, Souza KR, Vallespín E, Mena R, et al. New microdeletion and microduplication syndromes: A comprehensive review. Genet Mol Biol. 2014;37(1):210-9.

Clayton-Smith J, Walters S, Hobson E, Burkitt-Wright E, Smith R, Toutain A, et al. Xq28 duplication presenting with intestinal and bladder dysfunction and a distinctive facial appearance. Eur J Hum Genet EJHG. 2009;17(4):434-43.

Fernández RM, Núñez-Torres R, González-Meneses A, Antiñolo G, Borrego S. Novel association of severe neonatal encephalopathy and Hirschsprung disease in a male with a duplication at the Xq28 region. BMC Med Genet. 2010;11:137.

Van der Zwaag B, Staal WG, Hochstenbach R, Poot M, Spierenburg HA, de Jonge MV, et al. A co-segregating microduplication of chromosome 15q11.2 pinpoints two risk genes for autism spectrum disorder. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2010;153B(4):960-6.

Gleghorn L, Ramesar R, Beighton P, Wallis G. A mutation in the variable repeat region of the aggrecan gene (AGC1) causes a form of spondyloepiphyseal dysplasia associated with severe, premature osteoarthritis. Am J Hum Genet. 2005;77(3):484-90.

Maksimova N, Hara K, Nikolaeva I, Chun-Feng T, Usui T, Takagi M, et al. Neuroblastoma amplified sequence gene is associated with a novel short stature syndrome characterised by optic nerve atrophy and Pelger-Huët anomaly. J Med Genet. 2010;47(8):538-48.

Haack TB, Staufner C, Köpke MG, Straub BK, Kölker S, Thiel C, et al. Biallelic Mutations in NBAS Cause Recurrent Acute Liver Failure with Onset in Infancy. Am J Hum Genet. 2015;97(1):163-9.

Budisteanu M, Arghir A, Chirieac SM, Tutulan-Cunita A, Lungeanu A. 18q deletion syndrome - A case report. Maedica. 2010;5(2):135-8.

Ying M, Chen B, Tian Y, Hou Y, Li Q, Shang X, et al. Nuclear import of human sexual regulator DMRT1 is mediated by importin-beta. Biochim Biophys Acta. 2007;1773(6):804-13.

Fineman RM, Ablow RC, Breg WR, Wing SD, Rose JS, Rothman SL, et al. Complete and partial trisomy of different segments of chromosome 8: case reports and review. Clin Genet. 1979;16(6):390-8.

Maas NMC, Van de Putte T, Melotte C, Francis A, Schrander-Stumpel CTRM, Sanlaville D, et al. The C20orf133 gene is disrupted in a patient with Kabuki syndrome. J Med Genet. 2007;44(9):562-9.

Lapunzina P, Monk D. The consequences of uniparental disomy and copy number neutral loss-of-heterozygosity during human development and cancer. Biol Cell. 2011;103(7):303-17.

Horev G, Ellegood J, Lerch JP, Son Y-EE, Muthuswamy L, Vogel H, et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci U S A. 2011;108(41):17076-81.

Fernandez BA, Roberts W, Chung B, Weksberg R, Meyn S, Szatmari P, et al. Phenotypic spectrum associated with de novo and inherited deletions and duplications at 16p11.2 in individuals ascertained for diagnosis of autism spectrum disorder. J Med Genet. 2010;47(3):195-203.

Downloads

Published

2023-11-27

How to Cite

Uppal, K., Rana, L., Polipalli, S. K., Kumar, S., Jindal, A., & Kapoor, S. (2023). Application of array comparative genomic hybridization in clinical diagnostics of intellectual disability/developmental delay in children. International Journal of Contemporary Pediatrics, 10(12), 1845–1853. https://doi.org/10.18203/2349-3291.ijcp20233608

Issue

Section

Original Research Articles