Research Article

Reevaluation of baseline Widal titres in children: a cross-sectional survey of 250 children (1-15 years) in and around Davangere, Karnataka, India

Ramesh H., Nagesh B. P., Sandeep Karanam*, Sankeerth Yellinedi, Suresh Babu P. S.

Department of Pediatrics, J J M Medical College, Davanagere, Karnataka, India

Received: 06 February 2016
Accepted: 16 March 2016

*Correspondence:
Dr. Sandeep Karanam,
E-mail: sandeep.chandra@gmail.com

ABSTRACT

Background: Typhoid fever is a serious health problem in developing countries including India. Isolation of S. typhi by culture is the gold standard for diagnosis, but the positive cases are very less, time consuming and expensive, so the best alternative is Widal test. Widal test can be used as a diagnostic tool if we know the baseline titres in a particular community. Objective: To re-evaluate the baseline Widal titres in apparently healthy children in and around Davangere, and to find the significance of 1:160 titres in Widal test.

Methods: Cross sectional study was done on 250 children. Tube agglutination test was done on 112 healthy and 138 children with minor nontyphoidal illness. Titres were studied in relation to age, sex, nutritional status and healthy children to minor nontyphoidal illness.

Results: Out of 112 healthy children, 52.7% had titres less than 1: 20, 25% had 1:20, 18.8% had 1:40 and 3.6% had a titre level of 1:80 for ‘O’ antigen of S. typhi. 63% children had a titre of less than 1: 20, 21.4% had 1:20, 8% for 1:40 and 7.1% had a titre of 1:80 for ‘H’ antigen of S. typhi. For ‘H’ antigen of S. paratyphi A the titres for less than 1:20 were 83%, 8% cases had a titre of 1:20 and 4.5% cases had titre levels of 1:40 and 1:80. No children had a titre value of ≥1:160 for both S. typhi and paratyphi A in the healthy children group.

Conclusions: The baseline titres of healthy children in all the age groups and both sex is ≤ 1:80 for ‘O’ and ‘H’ antigen of S. typhi and ‘H’ antigen of S. paratyphi A.

Keywords: Widal titres, Healthy children, S. typhi, S. paratyphi A

INTRODUCTION

Typhoid is an acute illness caused by infection of Salmonella typhi, a major endemic health problem among children in India. Typhoid fever is a food and water borne disease causing a serious public health problem in developing countries including India. It is estimated that around 22 million cases and 220,000 deaths occur every year in developing countries according to a recent WHO estimate. Serological diagnosis relies classically in demonstrating the rising titre of antibody in paired samples is not always demonstrated even after 2 weeks. For curative purpose, a decision must be made on the basis of results obtained with a single acute phase sample i.e., by Widal test chosen in a particular community which depends on the background level of typhoid fever, and the level of typhoid vaccination. So Widal test can be used as a diagnostic tool in typhoid fever endemic area, if we know the baseline titres. Widal test is most simple and over utilized diagnostic tool available in local laboratories, it is relied, because of its convenience.

METHODS

The study was conducted at the Department of Pediatrics, J J M M C, Davanagere, Karnataka, India. The children
included in the study were from 1-15 years age group attending the 3 hospitals attached to JIMMCC Davangere.

Serum samples were drawn from all 250 children who included 112 healthy and 138 children with minor nontyphoidal illness. Widal tube test was done on all the serum samples by agglutination method using commercially available atigen (TULIP Diagnostics Pvt. Ltd). Serum dilutions from 1:20 to 1:320 were prepared. 0.9% saline is used as a control.

Present study was done to re-evaluate the value of Widal titres for the diagnosis of Typhoid fever in and around Davangere.

RESULTS

The titres were assessed for ‘O’ & ‘H’ of S. typhi and ‘H’ antigen of S. paratyphi. It is seen from the table N., that out of 138 children with minor nontyphoidal illness, 11.6% had ‘O’ agglutinin titre level of 1:160 when compared to healthy children who did not have any titre levels ≥1:160 (p<0.001). For ‘H’ agglutinin, 12.3% of the minor non typhoidal illness children had a titre of 1:160 while in the controls none had titre of ≥1:160 (p=0.001). Likewise the titres for ‘H’ antigen of S. paratyphi, 5.8% children with minor nontyphoidal illness children had titres of 1:160 while in the controls it was 0% for ≥1:160 (p<0.001). As shown in Table 1.

The results were also analysed for titres with relation to nutritional status (WHO GRADING OF PEM). Of the 250 children 181 were in <15th centile, 56 in <50th centile. The other 13 children belonged to <85 and <97th centiles for which we would not like to comment. The titres levels were not significant p=0.52, 0.08 and 0.11 for ‘O’ and ‘H’ of S.typhi and ‘H’ antigen of S.paratyphi as seen in Table 2.

Table 1: Widal titres in relation to healthy and nontyphoidal illness children.

<table>
<thead>
<tr>
<th>Children</th>
<th>NO (%)</th>
<th>20 (%)</th>
<th>40 (%)</th>
<th>80 (%)</th>
<th>160 (%)</th>
<th>TH No (%)</th>
<th>20 (%)</th>
<th>40 (%)</th>
<th>80 (%)</th>
<th>160 (%)</th>
<th>AH No (%)</th>
<th>20 (%)</th>
<th>40 (%)</th>
<th>80 (%)</th>
<th>160 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor nontyphoidal illness</td>
<td>138</td>
<td>54</td>
<td>37</td>
<td>17</td>
<td>14</td>
<td>16</td>
<td>53</td>
<td>30</td>
<td>18</td>
<td>20</td>
<td>17</td>
<td>84</td>
<td>21</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Healthy children</td>
<td>112</td>
<td>59</td>
<td>28</td>
<td>21</td>
<td>4</td>
<td>9</td>
<td>71</td>
<td>24</td>
<td>9</td>
<td>8</td>
<td>0</td>
<td>93</td>
<td>9</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>250</td>
<td>113</td>
<td>65</td>
<td>38</td>
<td>18</td>
<td>16</td>
<td>124</td>
<td>54</td>
<td>27</td>
<td>28</td>
<td>17</td>
<td>177</td>
<td>30</td>
<td>16</td>
<td>19</td>
</tr>
</tbody>
</table>

Table 2: Widal titres in relation to nutritional status (NS).

<table>
<thead>
<tr>
<th>NS</th>
<th>NO (%)</th>
<th>20 (%)</th>
<th>40 (%)</th>
<th>80 (%)</th>
<th>160 (%)</th>
<th>TH NO (%)</th>
<th>20 (%)</th>
<th>40 (%)</th>
<th>80 (%)</th>
<th>160 (%)</th>
<th>AH NO (%)</th>
<th>20 (%)</th>
<th>40 (%)</th>
<th>80 (%)</th>
<th>160 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><15th centile</td>
<td>181</td>
<td>82</td>
<td>51</td>
<td>23</td>
<td>13</td>
<td>12</td>
<td>90</td>
<td>42</td>
<td>20</td>
<td>20</td>
<td>9</td>
<td>135</td>
<td>18</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td><50th centile</td>
<td>56</td>
<td>25</td>
<td>11</td>
<td>13</td>
<td>2</td>
<td>3</td>
<td>29</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>36</td>
<td>10</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td><85th centile</td>
<td>11</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td><97th centile</td>
<td>02</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>250</td>
<td>113</td>
<td>65</td>
<td>38</td>
<td>18</td>
<td>160</td>
<td>124</td>
<td>54</td>
<td>27</td>
<td>28</td>
<td>17</td>
<td>177</td>
<td>30</td>
<td>16</td>
<td>19</td>
</tr>
</tbody>
</table>

X²= 11.11, P=0.52, NS X²= 19.27, P=0.08, NS X²= 18.09, P=0.11, NS

DISCUSSION

Typhoid still remains an endemic problem in India with the emergence of MDR in various parts. Isolation of Salmonella is the gold standard, but due to the fact that culture facility is not readily available or limited in many areas, Widal test can still be relied upon in our setting. It is less expensive, less time consuming and with less yield...
of culture positive cases, Widal test remains the only practical test in developing countries like India.

Classically, a fourfold rise of antibody in paired sera is considered diagnostic of typhoid fever. In a setting like ours, paired sera are often difficult to obtain and specific chemotherapy has to be initiated on the basis of a single Widal test.

Another drawback relates to the difficulty in interpreting the Widal tests in the background of normal titre of the population in the area and where the normal titres are not known. So every country, regions should have the baseline titre of healthy population and it should be revised or revalidated periodically for meaningful interpretation of titre.

Table 3: Widal titres for o and h antigen of s.typhi and h antigen of S. paratyphi by different workers and region.

<table>
<thead>
<tr>
<th>Workers</th>
<th>Place, year (no. of subjects)</th>
<th>TO<20 (%)</th>
<th>20 (%)</th>
<th>40 (%)</th>
<th>80 (%)</th>
<th>160 (%)</th>
<th>TH<20 (%)</th>
<th>20 (%)</th>
<th>40 (%)</th>
<th>80 (%)</th>
<th>160 (%)</th>
<th>AH<20 (%)</th>
<th>20 (%)</th>
<th>40 (%)</th>
<th>80 (%)</th>
<th>160 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pang T</td>
<td>Malaysia1983 (300)</td>
<td>6</td>
<td>29</td>
<td>26</td>
<td>34</td>
<td>5</td>
<td>61</td>
<td>18</td>
<td>14</td>
<td>5</td>
<td>2</td>
<td>78</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Kulkarni ML et al</td>
<td>Davangere,1994 (50)</td>
<td>52</td>
<td>34</td>
<td>10</td>
<td>4</td>
<td>-</td>
<td>90</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Punia JN et al</td>
<td>Chandigarh 2003 (255)</td>
<td>-</td>
<td>34.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>40.39</td>
<td>-</td>
<td>-</td>
<td>1.57</td>
<td>-</td>
<td>17</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ibadin MO et al</td>
<td>BenincityNigeria2002 (175)</td>
<td>-</td>
<td>29</td>
<td>33</td>
<td>14.9</td>
<td>1.1</td>
<td>29.1</td>
<td>33</td>
<td>14.9</td>
<td>1.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pohkrel BM et al</td>
<td>Nepal 2007</td>
<td>-</td>
<td>-</td>
<td>36</td>
<td>12</td>
<td>15</td>
<td>59</td>
<td>-</td>
<td>29</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aftab R et al</td>
<td>Pakistan 2009 (733)</td>
<td>-</td>
<td>89</td>
<td>48</td>
<td>8</td>
<td>-</td>
<td>91</td>
<td>55</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>97</td>
<td>59</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patil AM et al</td>
<td>Davangere 2007 (250)</td>
<td>64.4</td>
<td>22.4</td>
<td>3.6</td>
<td>-</td>
<td>-</td>
<td>67.2</td>
<td>21.2</td>
<td>8</td>
<td>3.6</td>
<td>-</td>
<td>98.4</td>
<td>1.2</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Noorbaksh et al</td>
<td>Iran (40)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≤40</td>
<td>(100)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≤40</td>
<td>(100)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Salmani MP et al</td>
<td>Bijapur, 2009</td>
<td>60</td>
<td>16.5</td>
<td>7</td>
<td>18</td>
<td>-</td>
<td>81</td>
<td>-</td>
<td>5</td>
<td>1.5</td>
<td>-</td>
<td>94</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Present study</td>
<td>250</td>
<td>45</td>
<td>26</td>
<td>15</td>
<td>7.2</td>
<td>6.4</td>
<td>49.6</td>
<td>21.6</td>
<td>10.8</td>
<td>11.2</td>
<td>6.8</td>
<td>70.8</td>
<td>12</td>
<td>6.4</td>
<td>7.6</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Titres in relation to age group

In this study, for ‘O’ titres 92.8% children had a titre of <1:80 in all the age groups. Only 7.2% had a titre of 1:160. There was no significant influence of age on ‘O’ titres (p=0.09) of S. typhi. Similarly there was no significant difference of A titres of S. paratyphi among different age groups (p=0.16). In contrast for H antigen the titres were high in the older age group (>6y) which was statistically significant (p=<0.05). This could be explained by subclinical exposure to the disease in older age group. The results are in agreement with the results obtained by others workers, like Kulkarni ML et al and Patil AM et al. Similar to present study the above studies also showed the titres of ≥1:160 in older age group for H antigen.

Titres in relation to gender

In the present study the level of Widal titres was nearly same in both the sexes except for 1:160 titres which was more in boys for ‘O’ and ‘H’ titres. (For ‘O’ titres in Males=8.3%; Females=3.8% and ‘H’ titres M=9%; F=3.8%). But this difference was not statistically significant (p=0.39 and 0.1 respectively for ‘O’ &‘H’). This indicates that gender has no influence on the Widal titres in children. These results are in agreement with the study conducted by Patil AM, et al at Davangere in 2006.4

Titres in relation to healthy children and minor nontyphoidal illness

When healthy children Widal titres were compared with the titres of children with minor nontyphoidal illness, there was significant difference in titres with higher titres noted in children with minor nontyphoidal illness (p<0.001; p=0.05 and p<0.001) for ‘O’ ‘H’ and AH respectively. All the healthy children had titres ≤1:80 for ‘O’ ‘H’ and AH, when compared to nontyphoidal illness were 1:160 titres were seen in 11.6%; 12.3% and 5.8% for ‘O’ ‘H’ and AH titres respectively. This suggests that the basal titre in healthy children is ≤1:80. In agreement to the present study various other studies as in Table shows that titres ≥1:160 was taken as significant in their region to diagnose typhoid fever.

Similar results have also been reported by other workers but in their study 1% of normal population too had a titre of 1:160 for both O and H antigen.4-10 Even the study done in 2003 in Nigeria showed that 97% had anti O titre of ≤1:80 and 95% had anti H titre of ≤1: 80, goes in accordance with the present study.11

This study adds to our knowledge those titers of ≥1:160 to be considered as significant to diagnose typhoidal illness. But this has to be established by estimating Widal titers in culture proven typhoid illness. Also the titres have to be re-established by studying in a larger population in our region. The established basal titres should be revaluated periodically.

Even today, Widal test remains one of the best, easily accessible, cheap and simple method for diagnosis of typhoid fever and thus helps in reducing morbidity and mortality from typhoid.

CONCLUSION

From present study, we concluded that:

1. The basal titres of healthy children in all age groups and both sex is ≤ 1:80 for ‘O’ and ‘H’ antigen of S. typhi.
2. The basal titres of healthy children in all age groups and both sex is ≤ 1:80 for ‘A’ of S. paratyphi.
3. Age did not influence the Widal titres.
4. Sex of the child did not have any effect on Widal titres.
5. No effect of nutritional status on Widal titres.
6. The titre levels above the baseline ≥1:160 titres can be taken as diagnostic titre for the diagnosis of typhoid fever in this part of the country.
7. Also the titres have to be re-established by studying in a larger population in our region.
8. The established basal titres should be revaluated periodically.

Funding: No funding sources

Ethical sources: None declared

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

Cite this article as: Ramesh H, Nagesh BP, Karanam S, Yellinedi S, Babu SPS. Reevaluation of baseline Widal titres in children: a cross-sectional survey of 250 children (1-15 years) in and around , Karnataka, India. Int J Contemp Pediatr 2016;3:575-8.