

Original Research Article

DOI: <https://dx.doi.org/10.18203/2349-3291.ijcp20253305>

Respiratory outcomes in preterm neonates (<32 weeks): impact of complete, partial, and absent antenatal steroid exposure

Bilal A. Paul, Ashfaq Masood, Syed B. Ahmed*, Mushtaq A. Bhat,
Zubair M. Tramboo, Javeed I. Bhat

Department of Neonatology and Pediatrics, Sheri Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India

Received: 20 September 2025

Accepted: 06 October 2025

***Correspondence:**

Dr. Syed B. Ahmed,

E-mail: basharatsyed388@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Preterm birth is a leading cause of neonatal morbidity and mortality, with respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and prolonged respiratory support as major complications. While antenatal corticosteroids improve respiratory outcomes, the effects of complete, partial, and absent exposure in infants <32 weeks are inconsistently reported. Aim of the study was to compare respiratory outcomes among preterm neonates <32 weeks based on complete, partial, or no antenatal corticosteroid exposure.

Methods: A prospective observational study conducted in the neonatal intensive care unit (NICU) of Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, from January 2021 to June 2025. 185 preterm neonates <32 weeks gestation were included: complete antenatal corticosteroids (ACS) (n=127), partial ACS (n=41), and no ACS (n=17). Outcomes included incidence and severity of RDS, need for surfactant therapy, need for respiratory support, BPD at 36 weeks postmenstrual age, and mortality. Statistical analysis included Chi-square, Kruskal-Wallis, and multivariate logistic regression.

Results: Complete ACS significantly reduced RDS (32.3% versus 46.3% and 58.8%), severe RDS, invasive ventilation, and surfactant use (all p<0.05). Median ventilation duration (3 versus 5 versus 7 days) and time to room air (20 versus 30 versus 50 days) were shortest with complete ACS (p<0.001). BPD (16.5% versus 22.0% versus 58.8%, p<0.001) and mortality (17.3% versus 31.7% versus 52.9%, p=0.002) were also lowest. ACS coverage, gestational age, and birth weight independently predicted outcomes.

Conclusions: Complete ACS markedly improves outcomes in preterm infants <32 weeks, underscoring the need for timely administration in high-risk pregnancies.

Keywords: Preterm neonates, Antenatal corticosteroids, Respiratory distress syndrome, Bronchopulmonary dysplasia, Neonatal mortality

INTRODUCTION

Preterm birth continues to be a major global health concern and is a leading contributor to neonatal morbidity and mortality. The worldwide incidence is approximately 10%, with an estimated 15 million preterm births in 2010 and 13.4 million in 2020.^{1,2} Respiratory complications such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and the need for prolonged ventilatory or oxygen support remain critical determinants of survival

and long-term outcomes in these infants. These complications primarily arise from lung immaturity, surfactant deficiency, and structural underdevelopment.^{3,4} Antenatal corticosteroids (ACS) are among the most effective interventions to improve outcomes in preterm neonates. Randomized trials and meta-analyses have consistently shown that ACS reduce the incidence and severity of RDS, decrease the requirement for mechanical ventilation, and lower neonatal mortality.⁵ Standard therapy consists of a complete course two doses of

betamethasone or four doses of dexamethasone administered between 24 and 34 weeks of gestation.⁶ In practice, however, ACS exposure varies: some mothers receive the full course, others only a partial course due to imminent delivery, while some receive none. Although complete ACS clearly improve neonatal respiratory outcomes, the relative benefits of partial versus no exposure remain less well defined.^{7,8} More recent studies have expanded our understanding. A 2025 meta-analysis reported that late-preterm ACS (34–36 + 6 weeks) did not significantly reduce RDS but did lower the need for CPAP and surfactant therapy.⁹ While concerns about potential long-term neurodevelopmental risks exist, a recent systematic review found no consistent evidence of harm when high-quality studies were considered.¹⁰ Recognizing these distinctions is essential for optimizing perinatal management and guiding parental counselling. Therefore, the present study aimed to compare respiratory outcomes including RDS, surfactant use, ventilatory support, BPD, and mortality among preterm neonates <32 weeks according to complete, partial, or no antenatal steroid exposure.

Aim

Aim of the study was to compare the effect of complete, partial, and no ACS on respiratory outcomes in preterm neonates less than 32 weeks of gestational age.

Objectives

Objectives of the study were: to compare the incidence of RDS, to evaluate the need for and frequency of surfactant therapy among the three study groups, to assess the need for invasive and non-invasive ventilation across the three groups, to compare the duration of invasive ventilation, non-invasive ventilation, and supplemental oxygen requirement, and to determine the incidence of bronchopulmonary dysplasia (BPD) at 36 weeks' postmenstrual age (PMA).

METHODS

This was a hospital-based observational analytical study conducted in the neonatal intensive care unit (NICU) of Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, from January 2021 to June 2025. All preterm infants <32 weeks' gestational age were screened and those meeting the predefined inclusion criteria were enrolled for the study.

Antenatal details were obtained at admission from maternal records and history. The clinical course, interventions, and complications were documented.

Diagnosis and management of RDS

Preterm neonates developing signs of RDS were diagnosed if at least two of the following criteria (NNPD

report, 2002–2003) were present: respiratory rate >60/min, subcostal or intercostal retractions, and expiratory grunt.⁹

Initial management was with continuous positive airway pressure (CPAP). The criteria for initiation of mechanical ventilation (MV) included any of the following: failure of optimal CPAP (>8–9 cm H₂O) or apnea on CPAP PaO₂ <50 mmHg or SpO₂ <89% on FiO₂ ≥0.8 PaCO₂ >60 mmHg with pH <7.25.

Apnea or gasping respiration

Surfactant was administered as early rescue therapy, advised for neonates requiring CPAP with FiO₂ ≥40% or for those already on MV. Each neonate was followed until discharge or death.

Data were recorded in a structured master chart and analyzed to compare short-term respiratory outcomes among the study groups.

Inclusion criteria

Patients with gestational age <32 weeks, singleton pregnancy, known antenatal corticosteroid exposure, and admission to NICU within 24 hours of birth were included.

Exclusion criteria

Patients with major congenital anomalies, unknown or uncertain ACS exposure, admission after 24 hours of life, and maternal systemic steroid use for non-obstetric reasons were excluded.

Exposure variables

Complete course

4 doses of dexamethasone given 12 hours apart, with the last dose at least 24 hours before birth.

Partial course

It included any incomplete regimen.

No course

No steroid was given.

Outcomes measured

Outcomes measured included incidence and severity of RDS, requirement for surfactant therapy, requirement and duration of invasive and non-invasive ventilation (CPAP, HFNC), high FiO₂ requirement, duration of supplemental oxygen until sustained room air, and incidence of BPD at 36 weeks PMA in-hospital and respiratory-related mortality.

RESULTS

Among 185 (100%) study sample, 127 (60.5%) had received complete antenatal steroid coverage, 41 (19.5%) had received partial coverage, and 17 (8.1%) had received no antenatal steroids. The incidence of RDS was significantly lower in the complete ACS group (32.3%) compared to partial (46.3%) and no ACS (58.8%) ($\chi^2=6.11$, $p=0.047$). The incidence of severe RDS also showed a significant difference, being lowest in the complete ACS group (5.5%) and highest in the no ACS group (29.4%) ($\chi^2=10.83$, $p=0.004$). The requirement of high FiO_2 (>0.8) was significantly reduced in neonates with complete ACS (7.1%) compared to partial (12.2%) and no ACS (29.4%) ($\chi^2=8.32$, $p=0.016$). The need for invasive ventilation was observed in 20.5% of neonates in the complete ACS group, 31.7% in partial ACS, and 52.9% in no ACS, showing a significant difference ($\chi^2=9.14$, $p=0.010$). The duration of invasive ventilation also differed significantly, with median values of 3, 5, and 7 days, respectively ($H=20.1$, $p<0.001$). The need for non-invasive ventilation was 69.3% in complete ACS, 85.4% in partial ACS, and 94.1% in no ACS ($\chi^2=7.90$, $p=0.019$). The duration of non-invasive ventilation increased stepwise with decreasing steroid coverage (10–12 days versus 14–20 days versus >18 days; $H=18.7$, $p<0.001$). The requirement for surfactant was significantly lower in complete ACS (20.5%) compared to partial (29.3%) and no ACS (52.9%) ($\chi^2=8.76$, $p=0.013$). The average days to sustain on room air were shortest in the complete ACS group (20 days), longer in partial ACS (30 days), and longest in no ACS (50 days) ($H=22.4$, $p<0.001$). The incidence of BPD was significantly reduced in the complete ACS group (16.5%) compared to partial (22.0%) and no ACS (58.8%) ($\chi^2=15.82$, $p<0.001$). Mortality was also significantly lower in neonates with complete ACS (17.3%) compared to partial (31.7%) and no ACS (52.9%) ($\chi^2=12.32$, $p=0.002$).

On applying multivariate logistic regression to the study cohort ($n=185$), antenatal steroid coverage, gestational age, and birth weight emerged as the strongest independent predictors of respiratory outcomes. Compared with complete ACS, both partial ACS (OR 1.8, 95% CI 1.1–3.0, $p=0.021$) and no ACS (OR 2.5, 95% CI 1.2–5.1, $p=0.013$) significantly increased the risk of RDS, and similar

associations were noted for need for ventilation, surfactant therapy, BPD, and mortality. Lower gestational age (<28 weeks) markedly increased risk (OR 2.1, 95% CI 1.1–3.8, $p=0.018$), while 30–32 weeks was protective (OR 0.45, 95% CI 0.25–0.82, $p=0.009$). Very low birth weight (<1000 g) strongly increased risk (OR 3.2, 95% CI 1.5–6.9, $p=0.003$), whereas birth weight ≥ 1500 g was protective (OR 0.62, 95% CI 0.35–0.95, $p=0.031$). The Apgar score <7 at 5 minutes showed a borderline association with RDS (OR 2.0, 95% CI 0.9–4.2, $p=0.07$) and with other outcomes, but became statistically significant for mortality ($p=0.009$). PROM/chorioamnionitis also remained borderline (OR 1.8, 95% CI 0.8–4.5, $p=0.11$). In contrast, sex of the neonate ($p=0.28$), mode of delivery ($p=0.42$), maternal diabetes ($p=0.58$), and maternal hypertension ($p=0.36$) did not show any significant association with adverse outcomes.

Table 1: Demographic characteristics of patients.

Characteristics	N (%)
Gestational age (weeks)	
<28	19 (10.5)
28-29+6	47 (25.2)
30-32	119 (64.3)
Birth weight (grams)	
<1000	33 (17.6)
1000-1499	51 (27.6)
1500-2499	94 (51.8)
≥ 2500	07 (3.8)
Gender	
Male	97 (52.4)
Female	88 (47.6)
Mode of delivery	
Cesarean	123 (66.5)
Vaginal	62 (33.5)
Apgar score at 5 minutes	
<7	135 (18.9)
≤ 7	150 (81.1)
Maternal factors	
Diabetes	18 (9.7)
Hypertension	22 (11.9)
Chorioamnitis/PPROM	13 (7.0)

Table 2: Respiratory support characteristics.

Outcome	Complete ACS n=127 (%)	Partial ACS n=41 (%)	No ACS n=17 (%)	Test statistics	P value
RDS incidence	41 (32.3)	19 (46.3)	10 (58.8)	$\chi^2=6.11$	0.047*
Severe RDS incidence	7 (5.5)	5 (12.2)	5 (29.4)	$\chi^2=10.83$	0.004*
High FiO_2 requirement (>0.8)	9 (7.1)	5 (12.2)	5 (29.4)	$\chi^2=8.32$	0.016*
Need for invasive ventilation	26 (20.5)	13 (31.7)	9 (52.9)	$\chi^2=9.14$	0.010*
Duration of invasive ventilation (days)	3	5	7	$H=20.1$	$<0.001^*$
Need for NIV	88 (69.3)	35 (85.4)	16 (94.1)	$\chi^2=7.90$	0.019*
Duration of NIV (days)	10–12	14–20	>18	$H=18.7$	$<0.001^*$
Need for surfactant	26 (20.5)	12 (29.3)	9 (52.9)	$\chi^2=8.76$	0.013*

Continued.

Outcome	Complete ACS n=127 (%)	Partial ACS n=41 (%)	No ACS n=17 (%)	Test statistics	P value
Average days to sustain on room air (days)	20	30	50	H=22.4	<0.001*
BPD incidence	21 (16.5)	9 (22.0)	10 (58.8)	$\chi^2=15.82$	<0.001*
Mortality	22 (17.3)	13 (31.7)	9 (52.9)	$\chi^2=12.32$	0.002*

*Statistically significant: p value<0.05

Table 3: Multivariate logistic regression for RDS (n=185).

Predicator (RDS)	OR (95%CI)	P value
Antenatal steroid courage (versus complete ACS)		
Partial ACS	1.8 (1.1-3)	0.021
No ACS	2.5 (1.2-5.1)	0.013
Gestational age (versus 28-29+6 weeks)		
<28	2.1 (1.1-3.8)	0.018
30-32	0.45(0.25-0.82)	0.009
Birth weight (versus 1000-1499 g)		
<1000 g	3.2 (1.5-6.9)	0.003
1500-2499 g	0.62 (0.35-0.95)	0.031
≥2500 g	0.40(0.12-0.95)	0.048
Sex, male (versus female)		
	1.2 (0.8-1.9)	0.28
Mode of delivery, caesarean (versus vaginal)		
	1.1 (0.7-1.8)	0.42
Agar score at 5 minutes, <7 (versus ≥7)		
	2.0 (0.9-4.2)	0.07
Maternal diabetes, yes (versus no)		
	1.3 (0.5-3.2)	0.58
PIH/hypertension, yes (versus no)		
	1.4 (0.6-3.4)	0.36
PPROM/chorioamnitis, yes (versus no)		
	1.8 (0.8-4.5)	0.11

Reference groups: Complete ACS, 28-29+6 weeks, 1000-1499 g, female, vaginal delivery, Apgar ≥7, no maternal comorbidities/infection. OR <1=protective effect.

Table 4: Multivariate logistic regression for need for invasive ventilation and surfactant (n=185).

Predicator	OR (95% CI)	P value	OR (95% CI)	P value
Need for invasive ventilation			Need for surfactant	
Antenatal steroid courage (versus complete ACS)				
Partial ACS	1.9 (1.0-3.4)	0.041	1.7 (1.0-3.0)	0.049
No ACS	2.8 (1.3-6.0)	0.008	2.9 (1.4-6.0)	0.004
Gestational age (versus 28-29+6 weeks)				
<28	2.8 (1.4-5.7)	0.004	3.0 (1.4-6.2)	0.004
30-32	0.55 (0.3-0.98)	0.041	0.50 (0.27-0.91)	0.023
Birth weight (versus 1000-1499 g)				
<1000	3.5 (1.6-7.8)	0.002	3.4(1.5-7.5)	0.003
1500-2499	0.50 (0.28-0.89)	0.029	0.48 (0.25-0.91)	0.031
Sex, male (versus female)				
	1.1 (0.7-1.8)	0.39	1.2 (0.7-2.1)	0.39
Mode of delivery, caesarean (versus vaginal)				
	1.0 (0.6-1.6)	0.95	1.1 (0.6-1.9)	0.74
Agar score at 5 minutes, <7 (versus ≥7)				
	2.3 (1.0-4.9)	0.051	1.8 (0.9-3.8)	0.081
Maternal diabetes, yes (versus no)				
	1.2 (0.5-2.9)	0.65	1.2 (0.4-3.1)	0.65
PIH/hypertension, yes (versus no)				
	1.3 (0.5-3.2)	0.61	1.3 (0.5-3.3)	0.57
PPROM/chorioamnitis, yes (versus no)				
	1.7 (0.7-4.1)	0.12	1.6 (0.7-4.0)	0.15

Reference groups: Complete ACS, 28-29+6 weeks, 1000-1499 g, female, vaginal delivery, Apgar ≥7, no maternal comorbidities/infection. OR <1=protective effect

Table 5: Multivariate logistic regression for BPD incidence and mortality (n=185).

Predicator	OR (95% CI)	P value	OR (95% CI)	P value
BPD				
Antenatal steroid courage (versus complete ACS)				
Partial ACS	2.0 (1.1-3.8)	0.024	2.4 (1.2-5.0)	0.015

Continued.

Predictor	OR (95% CI)	P value	OR (95% CI)	P value
No ACS	3.5 (1.6-7.8)	0.002	4.5 (2.0-10.1)	<0.001
Gestational age (versus 28-29+6 weeks)				
<28	4.2 (1.9-9.6)	<0.001	5.5 (2.2-13.4)	<0.001
30-32	0.40 (0.2-0.75)	0.006	0.35 (0.15-0.72)	0.004
Birth weight (versus 1000-1499 g)				
<1000	3.8 (1.7-8.2)	0.001	4.8 (2.0-11.0)	<0.001
1500-2499	0.46 (0.24-0.88)	0.031	0.55 (0.28-0.97)	0.032
Sex, male (versus female)				
Male	1.2 (0.7-2.1)	0.39	1.1 (0.6-2.0)	0.58
Mode of delivery, cesarean (versus vaginal)				
Cesarean	1.0 (0.6-1.8)	0.95	1.0 (0.6-1.7)	0.98
Agar score at 5 minutes, <7 (versus ≥7)				
<7	2.2 (1.0-4.9)	0.052	3.0 (1.3-6.8)	0.009
Maternal diabetes, yes (versus no)				
Yes	1.3 (0.5-3.4)	0.58	1.2 (0.4-0.33)	0.69
PIH/hypertension, yes (versus no)				
Yes	1.3 (0.5-3.4)	0.61	1.4 (0.6-3.6)	0.48
PPROM/chorioamnitis, yes (versus no)				
Yes	1.8 (0.7-4.5)	0.13	1.9 (0.8-4.7)	0.12

Reference groups: Complete ACS, 28-29+6 weeks, 1000-1499 g, female, vaginal delivery, Apgar ≥7, no maternal comorbidities/infection. OR <1=protective effect

DISCUSSION

In this prospective cohort of 185 preterm neonates, we found that complete ACS coverage, higher gestational age, and greater birth weight were protective against RDS, invasive ventilatory support, surfactant use, BPD, and mortality. Our findings are consistent with the Cochrane review by Roberts et al, which showed that a complete ACS course reduces RDS and neonatal death, and with the World Health Organization guideline regarding use of antenatal steroids.^{10,11} The dose-response effect was evident, with partial ACS conferring only intermediate benefit, in line with the overview by Sultana et al and the analysis by Socha et al confirming that timing and completeness critically determine neonatal respiratory outcomes.^{10,12} Our RDS incidence of 37.8% lies within the reported range of 30-60% for neonates at 28-32 weeks gestation, similar to previous studies.^{13,14} Birth weight showed a similar gradient: neonates <1000 g had nearly threefold higher risk of RDS and related outcomes, while those ≥1500 g had lesser incidence, consistent with findings in previous studies.¹⁵ The need for invasive ventilation and surfactant therapy was lower in those with complete ACS, similar to previous studies and the mechanistic review by Jobe and Goldenberg, which describe ACS-enhanced surfactant production.^{16,17} Our BPD incidence of 21.6% is comparable to the 11-50% range reported by study by Yang et al and large observational cohorts including Moreira et al, while our mortality rate of 23.8% is higher than high-income country cohorts but consistent with tertiary-level low- and middle-income country reports such as Manuck et al and Bulimba et al (2022).¹⁸⁻²¹ Among covariates, an Apgar score <7 at 5 minutes showed borderline association with respiratory outcomes but was significantly linked to mortality, confirming its prognostic value, while premature rupture of membranes and chorioamnionitis also trended toward borderline significance, consistent with the study conducted by Been et al.²² Other maternal and neonatal factors such as sex, mode of delivery, diabetes, and hypertension were not significant, in agreement with

previous studies who found these variables diminish once GA, BW, and ACS are controlled for.^{23,24} Together, these findings emphasize that ensuring complete ACS courses, particularly for lower GA and lower BW infants, remains a cornerstone of neonatal respiratory care and survival improvement.

Limitations

The findings of this study should be interpreted in light of certain limitations. First, this was a single-center study, which may limit the generalizability of the results. Second, the observational design precludes establishing causality. Third, the relatively small number of neonates in the no-ACS group reduced statistical power for subgroup analyses. Finally, long-term outcomes such as neurodevelopmental follow-up were not assessed and remain important areas for future research.

CONCLUSION

Complete antenatal corticosteroid coverage significantly reduced the incidence and severity of respiratory distress syndrome, need for surfactant therapy, invasive ventilation, bronchopulmonary dysplasia, and mortality in preterm neonates <32 weeks of gestation. Partial ACS exposure conferred only intermediate benefit, while absence of exposure was associated with the worst outcomes. Timely and complete administration of ACS should remain a cornerstone of perinatal care in high-risk pregnancies.

Recommendations

Our findings emphasize the importance of ensuring that eligible mothers receive a full course of antenatal corticosteroids prior to preterm delivery. Health systems should strengthen protocols for early identification and timely management of women at risk of preterm birth to avoid missed or incomplete courses. Future multicenter studies with larger cohorts, as well as follow-up into

childhood, are warranted to evaluate long-term respiratory and neurodevelopmental outcomes.

ACKNOWLEDGEMENTS

Authors would like to thank the faculty, residents, and nursing staff of the NICU at Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, for their invaluable support in patient care and data collection during the study.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. *Lancet.* 2012;379:2162.
2. Ohuma EO, Moller AB, Bradley E, Chakwera S, Hussain-Alkhateeb L, Lewin A, Okwaraji YB et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. *Lancet.* 2023;402:1261.
3. Polin RA, Fox WW, Abman SH. *Fetal and Neonatal Physiology.* 5th Edition. Elsevier. 2017.
4. Sweet DG, Carnielli VP, Greisen G, Hallman M, Klebermass-Schrehof K, Ozek E, Te Pas A, et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome – 2022 Update. *Neonatology.* 2023;119(1):3-23.
5. McGoldrick E, Stewart F, Parker R, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. *Cochrane Database Syst Rev.* 2020;12:CD004454.
6. Ontela V, Dorairajan G, Bhat VB, Chinnakali P. Effect of antenatal steroids on respiratory morbidity of late preterm newborns: a randomized controlled trial. *J Trop Pediatr.* 2018;64(6):531-8.
7. Li T, Shen W, Wu F, Mao J, Liu L, Chang Y, et al. Antenatal corticosteroids is associated with better postnatal growth outcomes of very preterm infants: A national multicenter cohort study in China. *Front Pediatr.* 2023;10:1086920.
8. Jobe AH, Goldenberg RL. Antenatal corticosteroids: an assessment of anticipated benefits and potential risks. *Am J Obstet Gynecol.* 2018;219(1):62-74.
9. Zullo F, Gulersen M, Di Mascio D, Roth SC, Logue TC, Rizzo G, et al. Antenatal corticosteroids for patients at risk of late preterm birth: a systematic review and meta-analysis of randomized controlled trials. *Am J Obstet Gynecol MFM.* 2025;7(8):101709.
10. Sultana S, Bruinsma F, Fisher Z, Homer CSE, Vogel JP. Long-term outcomes of antenatal corticosteroids for preterm birth: An overview of systematic reviews. *PLOS Glob Public Health.* 2025;5(5):e0004575.
11. World Health Organization. WHO recommendations on interventions to improve preterm birth outcomes. 2022. Available at: <https://www.who.int/publications/item/9789241508988>. Accessed on 12 June 2025.
12. Socha PM, Harper S, Strumpf E, Murphy KE, Hutcheon JA. Antenatal corticosteroids and newborn respiratory outcomes in twins: A secondary analysis. *BJOG.* 2024;131(8):1064-71.
13. Warren JB, Anderson JM. Newborn respiratory disorders. *Pediatr Rev.* 2010;31(12):487-95.
14. Pramanik AK, Rangaswamy N, Gates T. Neonatal respiratory distress: a practical approach to its diagnosis and management. *Pediatr Clin North Am.* 2015;62(2):453-69.
15. Wondie WT, Legesse BT, Mekonnen GB, Degaga GT, Zemariam AB, Gedefaw GD, et al. Incidence and predictors of respiratory distress syndrome among low birth weight neonates in the first seven days in Northwest Ethiopia Comprehensive Specialized Hospitals, 2023: A retrospective follow-up study. *BMJ Open.* 2023;13(11):e079063.
16. Liu SY, Yang HI, Chen CY, Chou HC, Hsieh WS, Tsou KI, et al. The gestational effect of antenatal corticosteroids on respiratory distress syndrome in very low birth weight infants: A population-based study. *J Formosan Med Assoc.* 2020;119:8.
17. Jobe AH, Goldenberg RL. Antenatal corticosteroids: An assessment of anticipated benefits and potential risks. *Am J Obstet Gynecol.* 2018;219(1):62-74.
18. Yang T, Shen Q, Wang S, Dong T, Liang L, Xu F, et al. Risk factors that affect the degree of bronchopulmonary dysplasia in very preterm infants: a 5-year retrospective study. *BMC Pediatr.* 2022;22:200.
19. Moreira A, Noronha M, Joy J, Bierwirth N, Tarriela A, Naqvi A, et al. Rates of bronchopulmonary dysplasia in very low birth weight neonates: a systematic review and meta-analysis. *Respir Res.* 2024;25:219.
20. Manuck TA, Rice MM, Bailit JL, Grobman WA, Reddy UM, Wapner RJ, et al. Preterm neonatal morbidity and mortality by gestational age: a contemporary cohort. *Am J Obstet Gynecol.* 2016;215(1):103.e1-e14.
21. Bulimba M, Cosmas J, Abdallah Y, Massawe A, Manji K. Early outcomes of preterm neonates with respiratory distress syndrome admitted at Muhimbili National Hospital, a prospective study. *BMC Pediatr.* 2022;22:731.
22. Been JV, Rours IG, Kornelisse RF, Jonkers F, de Krijger RR, Zimmermann LJ. Chorioamnionitis alters the response to surfactant in preterm infants. *J Pediatr.* 2010;156(1):10-5.
23. Bental Y, Reichman B, Shiff Y, Weisbrod M, Boyko V, Lerner-Geva L, et al. Impact of Maternal Diabetes Mellitus on Mortality and Morbidity of Preterm

Infants (24–33 Weeks' Gestation). *Pediatrics.* 2011;128(4).

24. Rocha de Moura MD, Margotto PR, Nascimento Costa K, Carvalho Garbi Novaes MR. Hypertension induced by pregnancy and neonatal outcome: Results from a retrospective cohort study in preterm under 34 weeks. *PLoS One.* 2021;16(8):e0255783.

Cite this article as: Paul BA, Masood A, Ahmed SB, Bhat MA, Tramboo ZM, Bhat JI. Respiratory outcomes in preterm neonates (<32 weeks): impact of complete, partial, and absent antenatal steroid exposure. *Int J Contemp Pediatr* 2025;12:1823-9.