

Case Report

DOI: <https://dx.doi.org/10.18203/2349-3291.ijcp20253789>

Pneumococcal meningitis by an unusual serotype: a case report

Catarina B. Soares*, Sofia Boavista, Hugo Rodrigues, Mariana Branco

Department of Pediatrics, Unidade Local de Saúde do Alto Minho, Viana do Castelo, Portugal

Received: 23 September 2025

Accepted: 03 November 2025

***Correspondence:**

Dr. Catarina B. Soares,

E-mail: catarinabajasoares@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

With the evolution of the vaccination and antimicrobial pressure, there has been changes in the *Streptococcus pneumoniae* serotypes becoming more frequent the ones not included in the vaccines. Herein this report presents a clinical case of a 11-month-old boy with meningitis due to *Streptococcus pneumoniae* serotype 24F. This serotype is not included in the vaccines available in Portugal. Therefore, we present this clinical case to explore and understand the changes of bacterial epidemiology.

Keywords: Pneumococcal meningitis, Epidemiology, Eerotype, Vaccines

INTRODUCTION

Worldwide, in 2019, there were approximately 2.51 million new meningitis cases across all age groups, with about 1.28 million occurring in children under the age of 5.¹ In 2019, there were an estimated 236,000 meningitis-related deaths worldwide, with 112,000 among children under 5. However, between 1990 and 2019, the global meningitis mortality rate decreased from 7.5 to 3.3 per 100,000, a 56% reduction.²

90-95% of the meningitis are caused by viruses. Enterovirus is the most common one, being responsible for 85% of the viral meningitis.³

Streptococcus pneumoniae, *Haemophilus influenzae* and *Neisseria meningitidis* are the major causes of bacterial meningitis in children <5 years of age worldwide, particularly in countries with limited resources.⁴ Pneumococcal meningitis is the most common cause of bacterial meningitis in children over 1 month old, accounting for approximately 70% of cases globally.

The epidemiology of pneumococcal meningitis has changed significantly with the development of new and

effective vaccines in the last 2 decades. In high to middle-income countries, the incidence has dropped from 0.8 to 0.1–0.3 per 100,000.⁵

The PSERENADE project assessed PCV10 (serotypes included 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, 23F) and PCV13 (serotypes included 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F) impact on pneumococcal meningitis incidence globally and concluded that pneumococcal meningitis incidence declined 48–74% relative to pre-PCV among children aged <5 years, 35–62% among children 5–17 years and 0–36% among adults 18 years and older.⁶ A recent systematic review assessed global *S. pneumoniae* serotype distribution.⁷ Despite the availability of PCV, among the 21 studies included in the systematic review, serotypes included in PCV accounted for >60% of the total serotypes in 11 reports.⁷ Serotype 19A was the most commonly identified in all of the geographic regions included in this review. In addition, serotypes 1 and 14 were prominent in Europe and Latin America and serotypes 6B, 14 and 19F were important in Africa-East Mediterranean, demonstrating geographic variations in the prevalence of PCV serotypes.⁷ Despite the decline in prevalence of PCV serotypes after PCV implementation, they still circulate and remain a significant source of burden, especially in Europe and Latin America.⁷

Although PCVs are included in the national immunization programs in many countries, an effect may only be observed over a long period of time if higher vaccination coverages are obtained worldwide.⁷

In Portugal, the 13-valent pneumococcal conjugate vaccine (PCV13) was available for private use from 2010 to 2015 and it was introduced in the National Immunization Program in 2015.⁸ More recently, in 2025, PCV20 was included in the Portuguese National Immunization Program. PCV13 confers protection to the 13 most prevalent pneumococcal serotypes.⁸ Additionally, PCV20 also protects 7 more serotypes (8, 10A, 11A, 12F, 15B, 22F, 33F).

CASE REPORT

We present the case of a 11 months-old infant boy with no relevant clinical history, with vaccination up to date according to the Portuguese national vaccination program, with 2 doses of PCV 13 and including vaccines extra-program such as 2 doses of anti-MenACWY vaccine and 3 doses of vaccine against rotavirus.

He presented to the emergency room with a vacant look, paleness and upper members in flexion.

He had a patent airway, without signs of difficult breathing (SpO₂ 97%), but was tachycardic (CF 158 bpm) with palpable central and peripheral pulses, paleness, CRT <1 second. He responded to the stimuli, but was drowsy with vacant look, right eyelid ptosis and isochoric and isoreactive pupils. Also, upper limb flexion and neck stiffness were present. Normal blood sugar detected (101 mg/dl). No rashes or petechiae were present but the patient was febrile (axillary temperature of 37,8°C).

The fever had started only 12 hours ago, with fever spikes every 4 hours and maximum axillary temperature of 39.2 °C. The infant was drowsy even in apyrexia and with food refusal. No respiratory, gastrointestinal or genitourinary symptoms were reported. The parents had a recent upper respiratory tract infection and the infant had gastroenteritis 2 weeks before. No relevant personal history was mentioned, with no known allergies and with no regular medication.

The patient started intravenous fluid therapy and blood samples showed the following: leukocytosis of 43000/l with 37900/l neutrophils, glucose 114 mg/dl, CRP 18.81 mg/dl and PCT 9.3 ng/ml. Hemoculture and uroculture were collected. Contrast enhanced computed tomography (CE-CT) before lumbar puncture was conducted due to alterations in the neurologic exam, but no abnormalities were found. Lumbar puncture was executed without any complications. Cerebrospinal fluid was turbid with 1310 cells (710 leukocytes), glucose 38 mg/dl (<50% seric glucose) and proteins 181.8 mg/dl.

Polymeric chain reaction of multiple viruses such as Herpes, Enterovirus, echovirus, CMV and EBV were all negative. Bacteriological culture of the cerebrospinal fluid revealed a *Streptococcus pneumoniae* serotype 24F.

DISCUSSION

Although less frequent, pneumococcal meningitis continues to be a major health issue in children in our environment.

Candeias et al studied the evolution of the *S. pneumoniae* in Portugal after the introduction of the PCV 13.⁹⁻¹¹ The most prevalent PCV13 serotypes were 19F (4.7% of all pneumococci), followed by serotypes 3 and 19A (1.8% each). Compared to previous periods, the prevalence of these three serotypes showed a statistically significant decreasing trend which was more pronounced between the pre-PCV13 and late-PCV13 periods. Non-vaccinated children and children aged 4–6 years were more likely to carry PCV13 serotypes.

The other PCV13 serotypes remained at a very low prevalence or were not even detected. Non-PCV13 serotypes corresponded to 89.3% after the introduction of the PCV13. The most frequent non-PCV13 serotypes were 15B/C (15.7%), 11A (11.2%), 23B (9.9%) and 23A (7.7%). Serotypes 22F and 33F included in PCV15 and PCV20, but not in PCV13, accounted for 3.6% of the isolates. Serotypes 8, 10A, 11A, 12F and 15B/C included in PCV20, but not in PCV13 nor in PCV15, accounted for 30.5% of the isolates. 55.2% of the serotypes detected in the period after introduction of PCV13 are not targeted by any of the PCVs that have recently become commercially available. They also studied the macrolide resistance that progressively increased mostly due to serotypes 15B/C, 24F, 19F and 33F. These findings suggest that the pneumococcal population is evolving and adapting to the pressure caused by the PCV13 vaccine and the antimicrobial use.

Similar results are discussed by Zamalloa et al that showed a significant reduction in the incidence of pneumococcal invasive disease caused by the serotypes included in the PCV13 in all age groups, in Madrid.^{12,13} However, the incidence of serotypes not included in conjugate vaccines has continuously increased, especially in those under 5 years of age.

In Lebanon, Reslan et al studied the emergency of *S. pneumoniae* serotype 24F, the same one detected in our patient.¹⁴ Overall, serotype 24F corresponded to 1.36% of all surveillance isolates, mainly in children less than 6 years of age. Studied isolates, collected from different regions in Lebanon, revealed similar antimicrobial resistance profiles and genetically homogenous patterns.

In Portugal, none of the available vaccines protects against the serotype identified in our patient.

CONCLUSION

The aim of this case is to draw attention on the still present pneumococcal meningitis in a highly immunized population of children that can have a fulminant outcome, particularly with aggressive serotypes not covered by the vaccines and with antimicrobial resistance. Understanding the serotype epidemiology of invasive pneumococcal disease among children is necessary for vaccine development and introduction policies.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: Not required

REFERENCES

1. Nakamura T, Cohen AL, Schwartz S, Mwenda JM, Weldegebriel G, Biey JNM, et al. The global landscape of pediatric bacterial meningitis data reported to the World Health Organization-coordinated Invasive Bacterial Vaccine-Preventable Disease Surveillance Network, 2014–2019. *J Infect Dis.* 2021;224:S161-73.
2. GBD 2019 Meningitis Collaborators. Global, regional, and national burden of meningitis and its aetiologies, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. *Lancet Neurol.* 2023;22(8):685-711.
3. Pormohammad A, Ghorbani S, Khatami A, Nasiri MJ, Azimi T, Alborzi A, et al. Global study of viral meningitis: a systematic review and meta-analysis. *J Pediatr Rev.* 2022;10(2):101-12.
4. Jackson C, Török ME. Epidemiology and clinical outcomes of bacterial meningitis in children and adults in low- and middle-income countries. *Curr Trop Med Rep.* 2024;11(1):8-17.
5. Brooke P, Patel A, Agrawal S. Pneumococcal meningitis in children. *Paediatr Child Health.* 2023;33(5):e117-8.
6. Yang Y, Knoll MD, Herbert C, Bennett JC, Feikin DR, Garcia Quesada M, et al. Global impact of 10- and 13-valent pneumococcal conjugate vaccines on pneumococcal meningitis in all ages: The PSERENADE project. *J Infect.* 2025;90(3):190-9.
7. Cui YA, Patel H, O'Neil WM, Li S, Saddier P. Pneumococcal serotype distribution: A snapshot of recent data in pediatric and adult populations around the world. *Hum Vaccin Immunother.* 2017;13(6):1229-41.
8. Direção-Geral da Saúde. Norma 008/2005 - Programa Nacional de Vacinação. Introdução da vacina conjugada de 13 valências contra infecções por *Streptococcus pneumoniae* (Pn13). Lisboa; DGS: 2015.
9. Candeias C, Almeida ST, Paulo AC, Simões AS, Ferreira B, Cruz AR, et al. *Streptococcus pneumoniae* carriage, serotypes, genotypes, and antimicrobial resistance trends among children in Portugal, after introduction of PCV13 in National Immunization Program: A cross-sectional study. *Vaccine.* 2024;42(22):126219.
10. Aguiar SI, Brito MJ, Horácio AN, Lopes JP, Ramirez M, Melo-Cristino J; et al. Decreasing incidence and changes in serotype distribution of invasive pneumococcal disease in persons aged under 18 years since introduction of 10-valent and 13-valent conjugate vaccines in Portugal, July 2008 to June 2012. *Euro Surveill.* 2014;19(12):20750.
11. Candeias C, Félix S, Handem S, de Lencastre H, Sá-Leão R. Clonal changes in the pneumococcal population carried by Portuguese children during six years of private use of the 13-valent pneumococcal conjugate vaccine: the relative contribution of clonal expansion, clonal emergence, and capsular switch events. *Microbiol Spectr.* 2023;11(2):e02909-22.
12. Latasa Zamalloa P, Sanz Moreno JC, Ordobás Gavín M, Barranco Ordoñez MD, Insúa Marisquerena E, Gil de Miguel Á, et al. Trends of invasive pneumococcal disease and its serotypes in the Autonomous Community of Madrid. *Enferm Infect Microbiol Clin (Engl Ed).* 2018;36(10):612-20.
13. Sanz JC, de Miguel S, Ordobás M, García Comas L. *Streptococcus pneumoniae* serotypes with meningeal tropism in cases of invasive pneumococcal disease. Community of Madrid, 2007–2018. *Enferm Infect Microbiol Clin (Engl Ed).* 2020;38(8):371-4.
14. Reslan L, Finianos M, Bitar I, Moumneh MB, Araj GF, Zaghlout A, et al. The Emergence of Invasive *Streptococcus pneumoniae* Serotype 24F in Lebanon: Complete Genome Sequencing Reveals High Virulence and Antimicrobial Resistance Characteristics. *Front Microbiol.* 2021;12:637813.
15. Merck & Co., Inc. European Commission Approves Merck's CAPVAXIVE® (Pneumococcal 21-valent Conjugate Vaccine) for Prevention of Invasive Pneumococcal Disease and Pneumococcal Pneumonia in Adults. Rahway, NJ: Merck. 2025. Available at: <https://www.merck.com/news/merck-receives-positive-eu-chmp-opinion-for-capvaxive-pneumococcal-21-valent-conjugate-vaccine-for-pneumococcal-vaccination-in-adults/>. Accessed on 230 August 2025.

Cite this article as: Soares CB, Boavista S, Rodrigues H, Branco M. Pneumococcal meningitis by an unusual serotype: a case report. *Int J Contemp Pediatr* 2025;12:2033-5.