

Original Research Article

DOI: <https://dx.doi.org/10.18203/2349-3291.ijcp20253771>

Identification of cut-off value for homeostatic model assessment for insulin resistance in children at a tertiary care hospital in Bangladesh

Ismat Jahan^{1*}, Farzana Sharmin², Roksana Parvin³, Muhammad Rezaul Karim⁴,
Diraj Chandra Biswas⁵, Suraiya Begum⁶

¹Upazila Health Complex, Keraniganj, Dhaka, Bangladesh

²100-Bedded District Hospital, Narsingdi, Dhaka, Bangladesh

³Department of Pediatrics, Khulna Medical College Hospital, Khulna, Bangladesh

⁴Health Services, Dhaka, Bangladesh

⁵Department of Pediatrics, Shahid Sayed Nazrul Islam Medical College, Kishoreganj, Dhaka, Bangladesh

⁶Department of Pediatrics, Bangladesh Medical University, Dhaka, Bangladesh

Received: 04 September 2025

Revised: 01 November 2025

Accepted: 11 November 2025

***Correspondence:**

Dr. Ismat Jahan,

E-mail: ismatjahanalo@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Insulin resistance (IR) is associated with obesity, type 2 diabetes, dyslipidemia, hypertension, atherosclerosis, polycystic ovary syndrome, and non-alcoholic fatty liver disease. In recent years, IR has been increasingly reported in children. Among surrogate indices, the homeostatic model assessment of IR (HOMA-IR) is the most widely used.

Methods: A cross-sectional study was conducted at Bangladesh medical university, involving 613 children aged 6-18 years. Fasting insulin, glucose, and lipid profiles were measured, and HOMA-IR was calculated. Optimal cut-off values for IR were determined using percentile and modified ATP III metabolic syndrome criteria. Diagnostic accuracy was assessed using sensitivity, specificity, and the Youden index.

Results: HOMA-IR cut-off values at the 85th percentile ranged from 2.3 to 2.6, and by metabolic syndrome criteria from 2.0 to 2.4, with high sensitivity (93.2%) and specificity (60.1%). At the 95th percentile, cut-offs were higher (3.0-4.7) but less sensitive (78.6%) and specific (72.9%). A value of 2.4 was consistent across both approaches.

Conclusions: This study recommends 2.4 as optimal HOMA-IR cut-off for diagnosing IR in Bangladeshi children.

Keywords: HOMA-IR, Insulin resistance, Metabolic syndrome, Children, Bangladesh

INTRODUCTION

Insulin resistance (IR), defined as the reduced physiological response of peripheral tissues to insulin, is a key factor in obesity, type 2 diabetes, metabolic syndrome, dyslipidemia, hypertension, atherosclerosis, polycystic ovary syndrome, and non-alcoholic fatty liver disease.^{1,2} Previously considered exclusive to adults, IR is now recognized in children, with or without obesity.^{3,4} It often precedes glucose intolerance by 1-2 decades, making early detection critical.^{5,6}

Several methods detect IR, with the euglycemic-hyperinsulinemic glucose clamp as the gold standard.⁷ However, its complexity and time requirements limit its use.⁸ The HOMA-IR is a simple, cost-effective alternative.⁹ HOMA-IR cut-off values vary by age, race, gender, and disease, with some studies using receiver operating characteristic (ROC) curves or percentile criteria for estimation.¹⁰⁻¹⁶ In Bangladesh, no established HOMA-IR cut-off exists for children. This study aims to determine optimal HOMA-IR cut-off values for diagnosing IR in Bangladeshi children.

METHODS

Study population

This cross-sectional study, conducted from May 2019 to September 2020 at Bangladesh medical university's paediatric endocrinology clinic and outpatient/inpatient departments, enrolled 613 apparently healthy children aged 6-18 years. Children on systemic steroids, with chronic diseases (e.g., kidney, liver, pancreatic, endocrine, or autoimmune disorders), or using medications affecting glucose metabolism (e.g., sodium valproate, risperidone, cyclosporine, tacrolimus, glucocorticoids, growth hormone) were excluded.

Clinical and laboratory measurements

Weight and height were measured using an electronic weighing machine and stadiometer to the nearest 0.2 kg and 0.1 cm, respectively. Waist circumference was measured midway between the lowest rib and iliac crest using a non-extensible tape during mid-respiration. Body mass index (BMI) was calculated as weight (kg) divided by height squared (m^2) and classified per CDC 2000 growth charts: normal weight ($\geq 5^{\text{th}}$ to $< 85^{\text{th}}$ percentile), overweight ($\geq 85^{\text{th}}$ to $< 95^{\text{th}}$ percentile), or obese ($\geq 9^{\text{th}}$ percentile).¹⁷ Blood pressure was measured in a seated position after 5 minutes of rest using an appropriate cuff.

Pubertal status was assessed using Tanner stages: stage 1 (pre-pubertal) and stages 2-4 (pubertal).^{18,19} Blood samples, collected after an 8-hour overnight fast, were analyzed for fasting insulin, glucose, 2-hour post-glucose load (1.75 g/kg), and lipid profiles using an Architect Plus ci4100 analyzer. Methods included glucose oxidase for serum glucose, microparticle enzyme immunoassay for insulin, glycerol phosphate oxidase for triglycerides, accelerator selective detergent for HDL cholesterol, cholesterol oxidase for total cholesterol, and Friedew Brittany's formula for LDL cholesterol.

Definition of metabolic syndrome and HOMA-IR calculation

Metabolic syndrome was defined using modified adult treatment panel III (ATP III) criteria, requiring three or more of: WC $\geq 90^{\text{th}}$ percentile for age and sex, HDL cholesterol < 40 mg/dL or treatment for this abnormality, triglycerides ≥ 150 mg/dL or treatment, blood pressure $\geq 130/85$ mm Hg or previously diagnosed hypertension, fasting plasma glucose ≥ 5.6 mmol/L or previously diagnosed type 2 diabetes.²⁰

HOMA-IR was calculated as fasting insulin ($\mu\text{U}/\text{mL}$) \times fasting glucose (mmol/L)/22.5.²¹

Statistical analysis

Analyses were performed with SPSS v25.0. Continuous variables are presented as mean \pm SD.

ROC curves were used to evaluate HOMA-IR cut-offs against MS. Diagnostic accuracy was assessed by sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC). Youden's index (sensitivity + specificity-1) was used to determine the optimal cut-off. In children without MS, HOMA-IR cut-offs were additionally assessed using percentiles (85th and 9th).

Ethics statement

The institutional review board of Bangladesh medical university approved the study. Written informed consent was obtained from participants parents.

RESULTS

Baseline characteristics

A total of 613 children aged 6-18 years were enrolled, comprising 47.3% boys and 52.7% girls. The mean \pm SD age of the study population was 11.28 \pm 2.47 years. Anthropometric and biochemical profiles are summarized in Table 1.

The mean body-mass index (BMI) was 23.19 \pm 5.78 kg/m². Among all participants, 45% were obese, 28% overweight, and 27% within the normal-weight range. Mean fasting plasma glucose and fasting insulin levels were 4.97 \pm 0.66 mmol/L and 16.02 \pm 10.88 $\mu\text{U}/\text{mL}$, respectively, corresponding to an average HOMA-IR value of 3.59 \pm 2.66.

The overall frequency of metabolic syndrome (MetS), defined according to the modified ATP III criteria, was 29.9%, slightly higher in girls (16.2%) than in boys (13.7%).

Determination of HOMA-IR cut-off values

Percentile-based and ROC analyses were performed to determine the optimal HOMA-IR thresholds for identifying IR.

Table 2 demonstrates the diagnostic performance of the continuous metabolic score (MetS score) for identifying metabolic syndrome according to different percentile cut-offs and subgroup analyses. At the 85th percentile (P=85) (cut-off 2.4), the MetS score showed the highest sensitivity (93.2%) but moderate specificity (60.1%), yielding a Youden Index of 0.53 and an AUC of 0.83. The 95th percentile (P95) (cut-off 3.6) provided improved specificity (72.9%) but reduced sensitivity (78.6%), maintaining an overall balance (Youden index=0.52). The optimal cut-off value determined by the Youden index was 2.16, corresponding to a sensitivity of 91.8% and specificity of 60.5%.

When stratified by sex, the optimal cut-offs were 2.2 for boys and 2.13 for girls, both showing comparable

diagnostic accuracy (AUC=0.82; Youden index=0.52). The prepubertal group exhibited slightly better discriminative ability (AUC=0.83; Youden index=0.56) compared to the pubertal group (AUC=0.83; Youden index=0.53).

Overall, these results indicate that a HOMA-IR value around 2.4 provides a balanced and clinically relevant threshold for identifying IR among Bangladeshi children and adolescents.

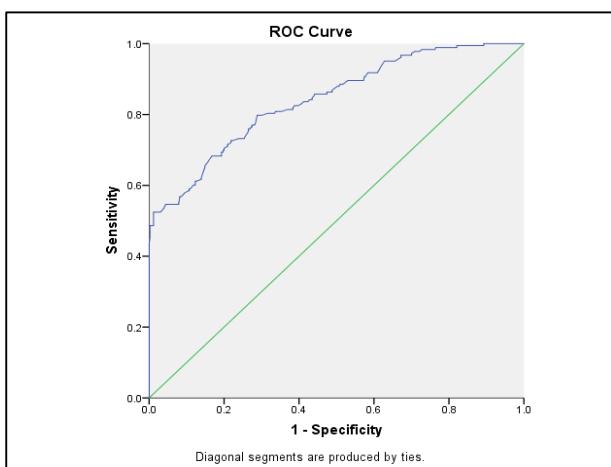
ROC curve analysis

The ROC curves for the total population and for each subgroup (boys, girls, prepubertal, and pubertal) are presented in Figures 1-5.

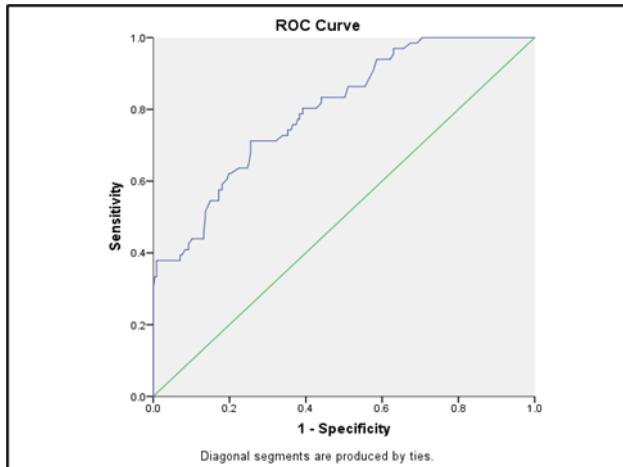
All curves demonstrated strong discriminative performance of HOMA-IR in identifying children with metabolic syndrome, with areas under the curve (AUCs) ranging between 0.84 and 0.91. Taken together, the ROC curves visually confirm the numeric findings presented in Table 2, highlighting the robustness and consistency of HOMA-IR as a diagnostic tool across sex and developmental stages.

Summary of key findings

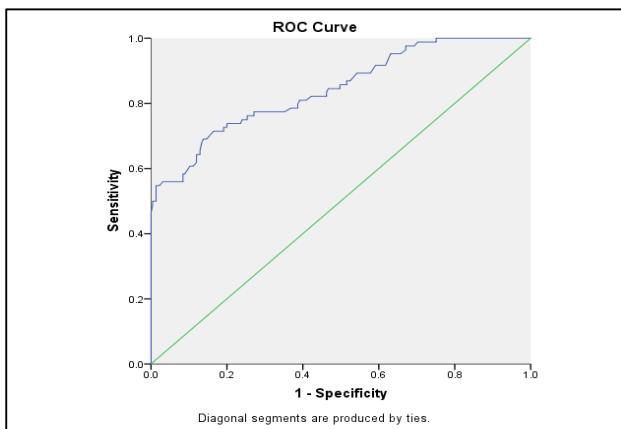
Mean HOMA-IR: 3.59 ± 2.66 . Optimal Youden-derived cut-off: 2.16 (overall); 2.2 (boys); 2.13 (girls). Physiological puberty-related increase: 2.0 (prepubertal) \rightarrow 2.4 (pubertal) and recommended unified screening cut-off: HOMA-IR=2.4.

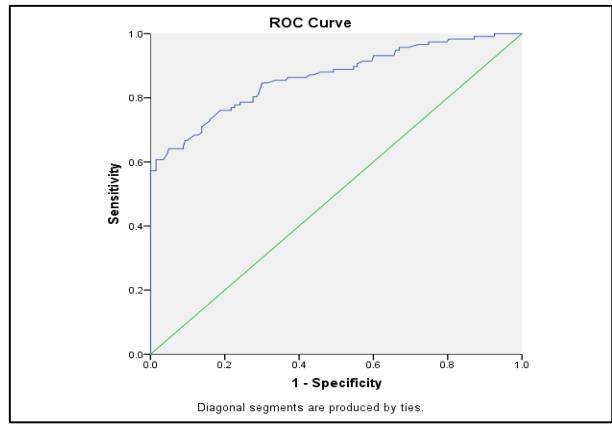

Table 1: Demographic, clinical and biochemical characteristics of study population, (n=613).

Characteristics	Mean \pm SD/ N (%)
Age (in years)	11.28 \pm 2.47
Boys	290 (47.3)
Girls	323 (52.7)
BMI (kg/m²)	23.19 \pm 5.78
Normal	167 (27)
Overweight	171 (28)
Obese	275 (45)
Systolic BP (mmHg)	100.27 \pm 11.51
Diastolic BP (mmHg)	67.30 \pm 9.75
Waist circumference (cm)	78.98 \pm 16.54
Fasting blood glucose (mmol/l)	4.97 \pm 0.66
2-hour plasma glucose (mmol/l)	6.14 \pm 2.52
Fasting insulin (μU/ml)	16.02 \pm 10.88
HOMA-IR	3.59 \pm 2.66
Triglycerides (mg/dl)	142.35 \pm 68.94
HDL cholesterol (mg/dl)	38.47 \pm 12.31
Total cholesterol (mg/dl)	168.92 \pm 39.45
LDL cholesterol (mg/dl)	102.56 \pm 35.89
Metabolic syndrome	29.9


Table 2: HOMA-IR cut-off values summary.

Group/criterion	Cut-off	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	AUC	Youden index
Percentile P85 (total)	2.4 (range 2.3-2.6)	93.2	60.1	52.0	95.0	0.83	0.53
Percentile P95 (total)	3.6 (range 3.0-4.7)	78.6	72.9	52.3	89.9	0.80	0.52
MetS (total, Youden)	2.16	91.8	60.5	52.6	94.3	0.82	0.52
Boys (MetS)	2.2	91.7	60.0	51.9	94.3	0.82	0.52
Girls (MetS)	2.13	91.9	60.0	52.0	94.4	0.82	0.52
Prepubertal (MetS)	2.0	93.9	62.1	54.3	95.7	0.83	0.56
Pubertal (MetS)	2.4	93.2	60.1	52.0	95.0	0.83	0.53


*MetS-metabolic syndrome, PPV-positive predictive value, NPV-negative predictive value, AUC-area under the curve.


Figure 1: ROC curve analysis of HOMA-IR determined by metabolic syndrome ATP III criteria in Bangladeshi children to be 2.16 with area under curve 0.842 and $p<0.0001$.

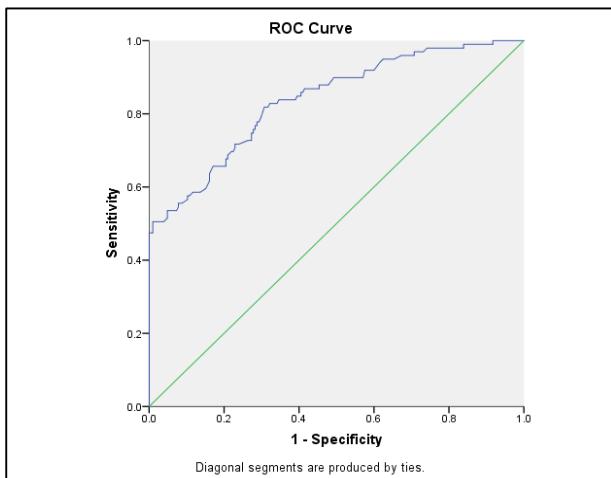

Figure 4: ROC curve analysis of HOMA-IR determined by metabolic syndrome ATP III criteria in pre-pubertal children to be 2.0 with area under curve 0.799 and $p<0.0001$.

Figure 2: ROC curve analysis of HOMA-IR determined by metabolic syndrome criteria in boys 2.2 with area under curve 0.843 and $p<0.0001$.

Figure 5: ROC curve analysis of HOMA-IR determined by metabolic syndrome ATP III criteria in pubertal children to be 2.4 with area under curve 0.865 and $p<0.0001$.

Figure 3: ROC curve analysis of HOMA-IR determined by metabolic syndrome criteria in girls to be 2.13 with area under curve 0.838 and $p<0.0001$.

DISCUSSION

IR is a crucial early abnormality in the pathway toward type 2 diabetes and other cardiometabolic diseases such as dyslipidemia, hypertension, non-alcoholic fatty liver disease, and polycystic ovary syndrome.²² Its recognition during childhood is particularly important because intervention at an early stage can prevent or delay future complications.²⁴ In this study, the HOMA-IR was applied, which is widely accepted as a practical and low-cost alternative to the euglycemic clamp method.^{7,8}

Our findings indicate that a HOMA-IR threshold of 2.4 is optimal for identifying insulin resistance in Bangladeshi children. This value was supported consistently by both the percentile approach (2.3-2.6 at the 85th percentile) and the metabolic syndrome criteria (2.0-2.4). The diagnostic accuracy was high, with sensitivity of 93.2% and a

negative predictive value of 97.5%, making it a strong tool for early screening (Table 4).

International comparisons show some variability, likely due to ethnic and environmental differences. Rocco et al reported 2.1 in Brazilian children, Yin et al found 2.3-3.0 in Chinese cohorts, and Shashaj et al observed 3.02 in Caucasian populations.^{15,16} Despite these differences, our cut-off lies within the reported range, while providing population-specific evidence for Bangladeshi children. A key strength of our study is that it included normal-weight, overweight, and obese children, unlike many previous studies restricted to obese groups.^{15,24-26} This broad representation improves the generalizability of our results.

The use of modified ATP III criteria, instead of the IDF definition, also allowed us to identify insulin resistance in non-obese children, an often-overlooked group.²³ Given that IR may occur independently of obesity, this approach adds clinical value. Although specificity was moderate, high sensitivity and negative predictive value are more important for a screening tool, since the priority is not to miss children at risk.²⁷

Limitations of this study include its single-center design and cross-sectional nature. Longitudinal studies are required to confirm whether this cut-off predicts future development of metabolic syndrome or diabetes in Bangladeshi children. Despite these limitations, our study provides much-needed baseline data for clinical practice.

CONCLUSION

A HOMA-IR cut-off of 2.4 is proposed as the most appropriate threshold for detecting IR in Bangladeshi children. This value is supported by both percentile and metabolic syndrome criteria, and shows high sensitivity for screening purposes. Applying this cut-off in practice could allow earlier recognition of children at risk, enabling preventive strategies against diabetes and other cardiometabolic disorders.

Recommendations

Clinicians should adopt the HOMA-IR threshold of 2.4 in screening for IR in Bangladeshi children. Public health programs, particularly school-based initiatives, should integrate HOMA-IR screening to identify at-risk children. Multicenter and longitudinal studies are needed to validate these findings and assess long-term outcomes. Policymakers should incorporate this population-specific cut-off into national guidelines for pediatric screening and management of metabolic risk.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Desouza C, Gilling L, Fonseca V. Management of the insulin resistance syndrome. *Curr Diab Rep.* 2001;1(2):140-7.
2. Ascaso JF, Susana P, Jose TR, Rosario IL, Antonia P, Rafael C. Diagnosing insulin resistance by simple quantitative methods in subjects with normal glucose metabolism. *Diabetes Care.* 2003;26(12):3320-5.
3. Chiarelli F, Marcovecchio ML. Insulin resistance and obesity in childhood. *Eur J Endocrinol.* 2008;159(1):S67-4.
4. McLaughlin T, Allison G, Abbasi F, Lamendola C, Reaven G. Prevalence of insulin resistance and associated cardiovascular disease risk factors among normal weight, overweight, and obese individuals. *Metabolism.* 2004;53(4):495-9.
5. Berges DF, Redondo FJF, Lozano L. Prevalence of metabolic syndrome estimated with the new World Health Organization recommendations: The HERMEX study. *Gac Sanit.* 2011;25(6):519-24.
6. Knowler WC, Barrett-Connor E, Fowler SE. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. *N Engl J Med.* 2002;346(6):393-403.
7. DeFronzo R, Tobin J, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. *Am J Physiol.* 1979;237(3):E214-23.
8. Singh B, Saxena A. Surrogate markers of insulin resistance: a review. *World J Diabetes.* 2010;1(2):36-47.
9. Esteghamati A, Ashraf H, Khalilzadeh O, Ali Z, Manouchehr N, Rashidi A, et al. Optimal cut-off of homeostasis model assessment of insulin resistance (HOMA-IR) for the diagnosis of metabolic syndrome: Third national surveillance of risk factors of non-communicable diseases in Iran. *Nutr Metab (Lond).* 2010;7:26.
10. Tresaco B, Bueno G, Pineda I, Moreno LA, Garagorri JM, Bueno M. Homeostatic model assessment index cut-off values to identify the metabolic syndrome in children. *J Physiol Biochem.* 2005;61(2):381-8.
11. Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and QUICKI for assessing insulin resistance among obese children and adolescents. *Pediatrics.* 2005;115(2):e500-3.
12. Valerio G, Licenziati MR, Iannuzzi A, Franzese A, Siani P, Riccardi G, et al. Insulin resistance and impaired glucose tolerance in obese children and adolescents from Southern Italy. *Nutr Metab Cardiovasc Dis.* 2006;16(4):279-84.
13. Madeira IR, Carvalho CN, Gazolla FM, Haroldo José de M, Marcos AB, Maria ANB. Cut-off point for HOMA-IR index from ROC curve in detection of metabolic syndrome in overweight prepubertal

children. *Arq Bras Endocrinol Metabol.* 2008;52(9):1466-73.

- 14. Singh Y, Garg MK, Tandon N, Marwaha RK. A study of insulin resistance by HOMA-IR and its cut-off value to identify metabolic syndrome in urban Indian adolescents. *J Clin Res Pediatr Endocrinol.* 2013;5(4):245-51.
- 15. Rocco ER, Mory DB, Bergamin CS, Fernando V, Valquíria LM, Bruno FAC, et al. Optimal cut-off points for BMI, waist circumference and HOMA-IR to identify a cluster of cardiometabolic abnormalities in Brazilian children and adolescents. *Arq Bras Endocrinol Metabol.* 2011;55(8):638-45.
- 16. Yin J, Li M, Xu L, Ying W, Hong C, Xiaoyuan Z, et al. Insulin resistance determined by HOMA and its association with metabolic syndrome in Chinese children and adolescents. *Diabetol Metab Syndr.* 2013;5(1):71.
- 17. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: International survey. *BMJ.* 2000;320(7244):1240-3.
- 18. Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in girls. *Arch Dis Child.* 1969;44(235):291-303.
- 19. Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. *Arch Dis Child.* 1970;45(239):13-23.
- 20. National Cholesterol Education Program (NCEP) Expert Panel. Third report of the NCEP on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Bethesda, MD: National Heart, Lung, and Blood Institute. NIH Publication No. 01-3670. 2001.
- 21. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RCI. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. *Diabetologia.* 1985;28(7):412-9.
- 22. Lee SH, Park SY, Choi CS. Insulin resistance: From mechanisms to therapeutic strategies. *Diabetes Metab J.* 2022;46(1):15-37.
- 23. Zimmet P. The IDF consensus definition of the metabolic syndrome in children and adolescents. *Pediatr Diabetes.* 2007;8(5):299-306.
- 24. Atabek ME, Pirgon O. Assessment of insulin sensitivity from fasting and OGTT in obese children. *J Pediatr Endocrinol Metab.* 2007;20(2):187-95.
- 25. Kurtoglu S, Hatipoglu N, Mazcoglu M, Mustafa K, Mehmet K, Meda K. Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in prepubertal and pubertal periods. *J Clin Res Pediatr Endocrinol.* 2010;2(3):100-6.
- 26. Morrison JA, Glueck CJ, Horn PS, George BS, Ping W. HOMA-IR*BMI at ages 9-10 predicts metabolic syndrome risk at ages 18-19: A 10-year prospective study. *Metabolism.* 2009;58(2):290-5.
- 27. Carrazzone CF, Brito AM, Gomes YM. Importance of pre-transfusion serologic evaluation in blood recipients. *Rev Bras Hematol Hemoter.* 2004;26(2):93-8.

Cite this article as: Jahan I, Sharmin F, Parvin R, Karim MR, Biswas DC, Begum S. Identification of cut-off value for homeostatic model assessment for insulin resistance in children at a tertiary care hospital in Bangladesh. *Int J Contemp Pediatr* 2025;12:1910-5.