

Original Research Article

DOI: <https://dx.doi.org/10.18203/2349-3291.ijcp20252212>

A comparative study of nebulized 3% hypertonic saline and normal saline in the management of respiratory syncytial virus-positive acute bronchiolitis in young infants

Mahmuda Khanom^{1*}, Probir Kumar Sarkar², K. M. Ishtiaque Sayeed³, M. Mahbub Al Amin⁴, Fahmida Ferdous⁵, Ayesha Siddika Tonny⁶, Farhana Bhuiyan⁷

¹Department of Pediatrics, Hope Maternal and Child Hospital, Cox's Bazar, Bangladesh

²Department of Pediatric Respiratory Medicine, Bangladesh Shishu Hospital and Institute, Dhaka, Bangladesh

³UNICEF, Bangladesh

⁴Department of Pediatric Cardiology, National Institute of Cardiovascular Disease (NICVD), Shere E Bangla Nagar, Dhaka

⁵Department of Pediatrics, Dhaka North City Corporation COVID-19 Dedicated Hospital, Dhaka, Bangladesh

⁶Department of Pediatrics, Kurmitola 500 Bed General Hospital, Dhaka, Bangladesh

⁷Ministry of Labour and Employment, Dhaka, Bangladesh

Received: 02 June 2025

Accepted: 04 July 2025

***Correspondence:**

Dr. Mahmuda Khanom,

E-mail: dr.mahmuda.nijhum18@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Acute bronchiolitis due to respiratory syncytial virus (RSV) is a major cause of hospitalization in infants, yet optimal therapeutic strategies are still under evaluation. Hypertonic saline has gained interest for its potential mucolytic and anti-edematous benefits. This study aimed to evaluate the clinical efficacy of nebulized 3% hypertonic saline compared to 0.9% normal saline in managing RSV-positive acute bronchiolitis in infants up to two months old.

Methods: A double-blind, randomized controlled trial was conducted at Dhaka Shishu (Children) hospital involving 90 infants aged \leq 60 days with confirmed RSV-positive bronchiolitis. Participants were randomly assigned to receive either nebulized 3% hypertonic saline or 0.9% normal saline, administered three times daily until discharge. Clinical efficacy was measured using the modified respiratory distress assessment instrument (MRDAI), duration of oxygen therapy, and length of hospital stay.

Results: The hypertonic saline group showed significantly greater clinical improvement starting at 12 hours post-intervention (MRDAI: 5.20 ± 0.19 vs. 5.98 ± 0.23 ; $p=0.005$). These infants also required shorter oxygen therapy (10.12 ± 1.61 vs. 11.54 ± 1.46 hours; $p=0.025$) and had significantly reduced hospital stays (62.98 ± 2.29 vs. 79.64 ± 3.69 hours; $p=0.0001$).

Conclusions: Nebulized 3% hypertonic saline is more effective than normal saline in improving clinical outcomes in RSV-positive bronchiolitis in infants under two months, significantly reducing disease severity, oxygen requirement, and hospitalization duration. Incorporation into treatment protocols is strongly recommended.

Keywords: Hypertonic saline, Normal saline, RSV, Bronchiolitis, Infants, MRDAI, Oxygen therapy, Hospital stay

INTRODUCTION

Respiratory syncytial virus (RSV) bronchiolitis is a primary cause of lower respiratory tract illness and

hospitalization in young infants globally.¹ Defined by the AAP guideline as an acute bronchiolar inflammation leading to edema, increased mucus, epithelial necrosis, and bronchospasm, it significantly contributes to

morbidity and mortality in children under five in Bangladesh, often occurring in epidemics during winter and early spring.^{2,3}

Despite decades of effort, no definitive evidence-based treatment exists, and standard care remains supportive, focusing on oxygenation, hydration, and nutrition.⁴ Pharmacological interventions like bronchodilators (salbutamol, adrenaline), anticholinergics, and saline nebulization have yielded inconsistent results. There is a lack of strong evidence for most interventions, including inhaled epinephrine, bronchodilators, steroids, anticholinergics, antibiotics, and chest physiotherapy. Glucocorticoids have largely shown no positive therapeutic effect, and while β 2-agonists, particularly epinephrine, sometimes offer short-term improvement, other studies report no significant benefit.⁴⁻⁸ Antibiotics are frequently used in bronchiolitis (99% in one study by Teunissen et al) but are generally considered ineffective for the condition.⁶

Several studies propose nebulized 3% saline for infants with bronchiolitis, citing its potential to reduce secretion viscosity, decrease airway edema, and enhance mucociliary function. Evidence indicates hypertonic saline positively impacts mucociliary clearances.^{9,10} Trials investigating nebulized 3% hypertonic saline have shown significant improvements in clinical severity scores and clinically significant reductions in hospital stay.¹¹⁻¹³ A Cochrane review concluded that nebulized 3% hypertonic saline might considerably shorten hospital stays and improve clinical severity scores in infants with acute viral bronchiolitis.¹³ The mechanism is thought to involve osmotic water movement into airways, improving mucociliary clearance. Current AAP guidelines recommend supplemental oxygen if saturation is <90%, while NICE guidelines suggest <92%.¹⁴ Notably, updated AAP guidelines now support using hypertonic saline nebulization for infants and children hospitalized for bronchiolitis.¹⁵

Objectives

Objectives were to evaluate the efficacy of nebulized 3% hypertonic saline and nebulized normal saline in young infants with RSV-positive acute bronchiolitis.

METHODS

Study design and setting

This was a randomized clinical trial conducted in the department of pediatrics at Dhaka Shishu (Children) hospital, Dhaka, Bangladesh. The study duration was from June 2018 to July 2020. Ethical approval was obtained from the ethical review committee of Bangladesh institute of child health (BICH), Dhaka, and informed written consent was taken from the legal guardians of each child.

Study population

Infants aged 0 to 2 months admitted with a diagnosis of RSV-positive acute bronchiolitis were eligible. Inclusion criteria were: first episode of respiratory distress with wheezing, preceding viral upper respiratory infection symptoms (cough, nasal blockage, tachypnoea, chest indrawing), MRDAI score >3, and no evidence of bacterial infection. Exclusion criteria included: age >2 months, RSV-negative bronchiolitis, history of two or more episodes of respiratory distress, chronic cardiopulmonary disease, history of mechanical ventilation in the neonatal period, or critical illness at presentation. Nasopharyngeal swabs were tested for RSV using RT-PCR.

A sample size of 45 in each group was targeted, calculated based on an expected mean length of hospital stay of 74.7 hours in the control group and 58.1 hours in the experimental group, with a standard deviation of 27.2, a 95% confidence level, and 90% power.

Randomization and interventions

Patients were randomized by lottery method into two groups: an intervention group (HS group) receiving nebulized 3 ml of 3% hypertonic saline and a control group (NS group) receiving nebulized 3 ml of 0.9% normal saline. Nebulization was administered three times daily (8-hourly intervals) until discharge. Both groups received standard supportive care, including proper positioning, nasal and oropharyngeal suction as needed, IV fluids, appropriate feeding, oxygen therapy (if $\text{SpO}_2 < 92\%$), and paracetamol for fever.

Outcome measures

The primary outcome variables were: MRDAI score (clinical severity), assessed at admission, 12 hours after the first nebulization, and then daily until discharge. Clinical recovery, categorized as rapid (within 72 hours) or gradual (after 72 hours). Duration of oxygen therapy (hours from initiation to withdrawal, stopped when $\text{SpO}_2 \geq 95\%$).

Length of hospital stay (hours from admission to discharge). Secondary outcomes included respiratory rate, tachycardia, use of accessory muscles, cyanosis, auscultatory findings (wheezing/Ronchi), and SpO_2 . Discharge criteria were: MRDAI score <3, infant feeding well, and $\text{SpO}_2 \geq 95\%$ in room air.

Data collection and analysis

Data were collected using a pre-tested, semi-structured questionnaire. Statistical analysis was performed using SPSS version 26.0. Categorical variables were compared using the chi-square (χ^2) test, and continuous variables were compared using an unpaired t test. A $p < 0.05$ was considered statistically significant.

Ethical considerations

The ethical review committee (ERC) of Bangladesh Shishu hospital and institute, Dhaka, approved the study protocol. The aims, objectives, risks, and benefits were explained to parents in clear, local language, and informed written consent was obtained. Confidentiality was ensured, and parents were told their participation would contribute to clinical knowledge and patient management. They could withdraw at any time without affecting their child's treatment.

RESULTS

Table 1 shows the mean age of studied patients 36.91 ± 1.76 days in HS group and 39.21 ± 1.50 days in the NS group. The mean difference was not statistically significant between groups ($p > 0.05$). Majority of patients were males in both groups, 33 (73.33%) in the HS group and 32 (71.11%) in NS group and females were 12 (26.67%) in HS group, 13 (28.89%) in NS group. The difference was not statistically significant ($p > 0.05$).

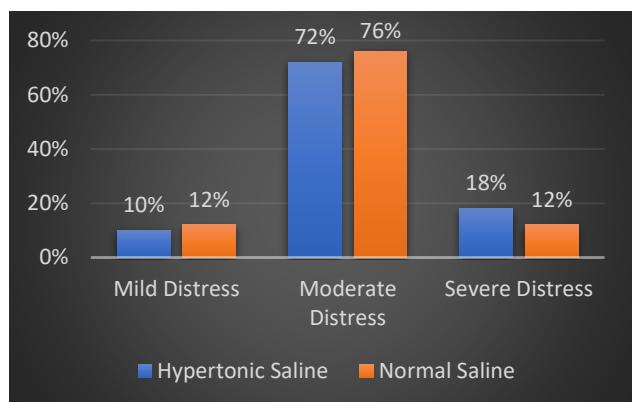
Table 1: Demographic characteristics of the studied patients, (n=90).

Variables	HS, n=45 (%)	NS, n=45 (%)	P value
Age (in days) \pm SD	36.91 ± 1.76	39.21 ± 1.50	^a 0.19 ^{ns}
Gender			
Male	33 (73.33%)	32 (71.11%)	^b 1.0 ^{ns}
Female	12 (26.67%)	13 (28.89%)	

*Results are expressed as frequency, percentage and mean. ns=not significant, p<0.05=significant. ^aP value reached from unpaired t-test and ^bP value reached from Chi-square test.

Intervention group: Nebulization with 3 ml of 3% hypertonic saline.

Control group: Nebulization with 3 ml of normal saline.


Table 2 shows all the cases in both groups presented with breathing difficulty, cough, wheeze, tachypnea, chest indrawing, rhonchi, nasal blockage and feeding difficulty. Nasal flaring was present 15 (33.3%) cases in HS group and 10 (22.2%) cases in NS group. Tachycardia 44 (97.7%) in NS group and 42 (93.3%) in NS group. Cyanosis was present 13 (28.8%) in HS group and 12 (26.6%) in NS group. Only 5 (11.1%) cases in HS group and 3 (6.6%) in NS group presented with apnea. According to clinical presentation both groups are same ($p > 0.05$).

Bar diagram demonstrates that most of the young infant admitted in hospital with moderate respiratory distress according to a MRDAI score, among them 72% in HS group and 76% in NS group.

Table 2: Clinical presentation of studied patients on admission.

Variables	HS, n=45 (%)	NS, n=45 (%)	P value
Difficulty in breathing	45 (100)	45 (100)	1.0 ^{ns}
Cough	45 (100)	45 (100)	1.0 ^{ns}
Temperature	43 (95.5)	42 (93.3)	0.74 ^{ns}
Wheeze	45 (100)	45 (100)	1.0 ^{ns}
Ronchi	45 (100)	45 (100)	1.0 ^{ns}
Chest indrawing	45 (100)	45 (100)	1.0 ^{ns}
Nasal blockage	45 (100)	45 (100)	1.0 ^{ns}
Nasal flaring	15 (33.3)	10 (22.2)	0.24 ^{ns}
Tachycardia	44 (97.7)	42 (93.3)	0.56 ^{ns}
Tachypnoea	45 (100)	45 (100)	1.0 ^{ns}
Apnea	5 (11.1)	3 (6.6)	0.46 ^{ns}
Cyanosis	13 (28.8)	12 (26.6)	0.82 ^{ns}
Inability to feed	45 (100)	45 (100)	1.0 ^{ns}

*ns=not significant, result were expressed as frequency, percentage and p value reached from chi-square test.

Figure 1: Grading of respiratory distress of the study patient by MRDAI score.

Table 3 shows hyper-translucency present 41 (91.1%) in HS group and 40 (88.8%) in NS group whereas hyperinflation 40 (88.8%) in HS group and 42 (93.3%) in NS group. Only 8 (17.7%) of atelectasis was present in HS group and 6 (13.3%) in NS group, according to radiological findings both groups are same ($p > 0.05$).

Table 3: Chest radiological findings of studied patients on admission.

Radiological finding	HS, n=45 (%)	NS, n=45 (%)	P value
Hyperinflation	40 (88.8)	42 (93.3)	0.461 ^{ns}
Hyper translucency	41 (91.1)	40 (88.8)	0.710 ^{ns}
Atelectasis	8 (17.7)	6 (13.3)	0.603 ^{ns}

*ns=not significant, results were expressed as frequency, percentage and p value reached from chi-square test.

Table 4: Mean MRDAI score comparison.

Time point	Hypertonic saline	Normal saline	P value
Baseline	6.56±1.21	6.82±1.30	0.159
12 hours	5.20±0.19	5.98±0.23	0.005
Day 1	4.01±0.16	4.87±0.23	0.001
Day 2	2.80±0.13	3.60±0.21	0.001
Day 3	2.01±0.15	2.52±0.21	0.005
Day 4	1.29±0.18	2.31±0.13	0.003

Table 5 shows that the patients of HS group required 10.12 ± 1.61 hours of oxygen therapy, while the patients of NS group required 11.54 ± 1.46 hours of oxygen therapy. Duration of oxygen therapy significantly reduced in HS group compared to NS group ($p<0.05$).

Table 5: Duration of oxygen therapy.

Group	Duration (hours)	P value
Hypertonic saline	10.12 ± 1.61	
Normal saline	11.54 ± 1.46	0.025

Table 6 shows mean SpO_2 during admission 91.46 ± 1.58 in HS group and 91.68 ± 1.70 in NS group, which was not statistically significant whereas changes of SpO_2 was increased in HS group (93.13 ± 0.16) than NS group (92.16 ± 0.14) after 24 hours of nebulization ($p<0.05$).

Table 6: Comparison of SpO_2 between groups.

Comparison of SpO_2	HS, n=45	NS, n=45	P value
At Admission	91.46 ± 1.58	91.68 ± 1.70	0.551 ^{ns}
After 24 hours	93.13 ± 0.16	92.16 ± 0.14	0.012 ^s

*n=not significant, s=significant, p value reached from the unpaired t-test

Table 7 shows mean hospital stay was 62.98 ± 2.29 days in HS group and 79.64 ± 3.69 hours in NS group, which means hospital stay was significantly less in HS group than NS group ($p<0.05$).

Table 7: Length of hospital stay.

Group	Duration (hours)	P value
Hypertonic saline	62.98 ± 2.29	
Normal saline	79.64 ± 3.69	0.0001

DISCUSSION

This prospective, randomized clinical trial was conducted in the department of pediatrics at Dhaka Shishu (Children) hospital, involving 90 infants aged 0-2 months with confirmed RSV-positive acute bronchiolitis. The study found that nebulized 3% hypertonic saline significantly reduced clinical severity, duration of oxygen

therapy, and length of hospital stay compared to 0.9% normal saline, supporting its potential as an effective treatment option in this age group.

In this study, the majority of participants (61%) were between 29-60 days of age, while 39% were neonates. The mean age in the hypertonic saline group was 36.91 ± 1.76 days, and in the normal saline group, it was 39.21 ± 1.50 days. This difference was not statistically significant ($p>0.05$), aligning with similar studies. Khanal et al reported a mean age of 15.88 ± 9.1 days, Malik et al reported 6.03 ± 3.71 months in the hypertonic saline group and 5.69 ± 3.34 months in the normal saline group, while Islam et al found 5.2 ± 3.2 months and 5.5 ± 3.0 months in the respective groups.¹⁶⁻¹⁸

A male predominance was observed in both groups (HS: 73.33%, NS: 71.11%), though the difference was not statistically significant ($p>0.05$). This finding is consistent with other studies, including Malik et al, Kuzik et al and Restori et al which also noted a slightly higher incidence among males.^{12,17,19} This may be explained by both the biological predisposition of males to bronchiolitis and by cultural tendencies in the Indian subcontinent to seek medical care more readily for male children.

Regarding clinical symptoms, all patients presented with breathing difficulty, cough, nasal blockage, wheezing, Ronchi, tachypnoea, chest indrawing, and feeding difficulty. Fever was present in 95.5% of the HS group and 93.3% of the NS group, and nasal flaring occurred in 33.3% and 22.2%, respectively. These differences were not statistically significant ($p>0.05$). These clinical findings align with those reported by Kabra et al and Alisamir et al where cough, fast breathing, and fever were the most common symptoms in bronchiolitis cases. Studies have consistently shown that wheezing is a hallmark feature of bronchiolitis, consistent with this study.¹⁸⁻²²

Baseline SpO_2 levels were similar between groups (HS: $91.46\pm1.58\%$, NS: $91.68\pm1.70\%$), with no significant difference. However, 24 hours after treatment, the HS group showed significantly greater improvement ($93.13\pm0.16\%$ vs. $92.16\pm0.14\%$; $p<0.05$). These findings support previous research indicating better oxygenation with hypertonic saline. One study found a change in oxygen saturation of $0.44\pm0.43\%$ in HS group compared to $0.36\pm0.50\%$ in NS group ($p<0.05$), and Islam et al also reported significant improvement in SpO_2 ($p<0.001$).¹⁸

Radiological findings in this study included hyperinflation and increased translucency, which were the most common abnormalities. Similar findings have been documented by Amara and Amin et al who observed hyperinflation, increased interstitial markings, streaky densities, and “dirty lung” features in bronchiolitis cases.^{23,24} These were also observed in studies by Caballero et al and Islam et al.^{1,18}

At baseline, MRDAI scores were nearly identical between groups. A previous study reported baseline scores of 9.0 ± 1.0 in the HS group and 9.3 ± 1.8 in the NS group, showing no significant difference.²⁵ In our study, both groups showed improvement in MRDAI scores over time, but reduction was significantly greater in hypertonic saline group beginning at 12 hours post-intervention and continuing through day 4 ($p < 0.05$). These findings correspond with studies by Khanal et al, Kabra et al and others, where hypertonic saline led to a more marked improvement in clinical severity scores.^{16,20,24}

Furthermore, significant reductions in MRDAI scores between baseline and each follow-up point (12 hours, day 1, day 2, day 3, and day 4) were observed in the HS group compared to the NS group. In a separate study, a 16.7% reduction in clinical score was noted in the NS + adrenaline group, while a 13.2% reduction occurred in the 3% hypertonic saline group between day 1 and day 2, with statistical significance ($p < 0.0001$).²⁴ Khanal et al also observed that clinical severity scores dropped more in the 3% HS group than in the NS or salbutamol groups by day 3 of treatment ($p < 0.01$).¹⁶

In terms of oxygen therapy, the mean duration was shorter in the HS group (10.12 ± 1.61 hours) than in the NS group (11.54 ± 1.46 hours), with statistical significance ($p < 0.05$). Amin et al also observed a significantly shorter oxygen therapy duration in their group I compared to group II (15.0 ± 6.0 vs. 26.4 ± 5.37 hours; $p < 0.05$).²³ Islam et al reported similar results, with the HS group requiring 12.53 ± 3.58 hours vs. 20.25 ± 4.15 hours in the NS with salbutamol group ($p = 0.009$).¹⁸

The mean hospital stay was significantly shorter in the HS group (62.98 ± 2.29 hours) compared to the NS group (79.64 ± 3.69 hours; $p < 0.05$). Khanal et al found that the length of hospital stay was 3.4 ± 1.7 days in the HS group versus 4.9 ± 1.4 days in the NS group ($p = 0.001$).¹⁶ Kuzik et al reported similar findings (2.6 ± 1.9 vs. 3.5 ± 2.9 days; $p < 0.05$).¹² A Cochrane meta-analysis by Zhang et al reported a 24% shorter stay with hypertonic saline, and Popp et al also supported this finding.^{26,27} However, some studies, like those by Popp et al and Baron et al reported no significant differences in hospital stay duration.^{10,27}

In summary, this study reinforces the clinical advantage of using nebulized 3% hypertonic saline in managing RSV-positive bronchiolitis in young infants. The intervention was associated with faster clinical improvement, enhanced oxygenation, and significantly reduced hospital resource use, supporting its incorporation into standard care protocols.

CONCLUSION

This study demonstrates that nebulized 3% hypertonic saline provides significant clinical advantages over normal saline in the treatment of RSV-positive acute bronchiolitis in infants up to two months of age.

Specifically, it leads to more rapid improvement in respiratory distress symptoms, as reflected by declining MRDAI scores, and results in shorter durations of both oxygen therapy and hospitalization. These findings support the incorporation of hypertonic saline into treatment protocols for this age group to enhance recovery and reduce healthcare burden.

ACKNOWLEDGEMENTS

Authors would like to thank to medical and nursing staff of the neonatal unit of Bangladesh Shishu hospital and institute for their unwavering support and dedication during the study.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Caballero MT, Polack FP, Stein RT. Viral bronchiolitis in young infants: new perspectives for management and treatment. *J Pediatr.* 2017;93(1):75-83.
2. Verma N, Lodha R, Kabra SK. Recent advances in management of bronchiolitis. *Indian Pediatr.* 2023;50(10):939-49.
3. Darville T. Chlamydia trachomatis infections in neonates and young children. *Sem Pediatr Infect Dis.* 2005;16(4):235-44.
4. Van Woensel JB, Wolfs TF, Van Aalderen WM, Brand PL, Kimpfen JL. Randomised double blind placebo controlled trial of prednisolone in children admitted to hospital with respiratory syncytial virus bronchiolitis. *Thorax.* 1997;52(7):634-7.
5. Kabir AL, Amin MR, Mollah MA, Khanam S, Mridha AA, Ahmed S, et al. Respiratory disorders in under-five children attending different hospitals of Bangladesh: A cross-sectional survey. *J Respirat Med Res Treat.* 2016;11(10.5171):2016-183615.
6. Teunissen J, Hochs AH, Vaessen-Verberne A, Boehmer AL, Smeets CC, Brackel H, et al. The effect of 3% and 6% hypertonic saline in viral bronchiolitis: a randomised controlled trial. *Europ Respirat J.* 2014;44(4):913-21.
7. Kellner JD, Scheifele D, Vanderkooi OG, MacDonald J, Church DL, Tyrrell GJ. Effects of routine infant vaccination with the 7-valent pneumococcal conjugate vaccine on nasopharyngeal colonization with *Streptococcus pneumoniae* in children in Calgary, Canada. *Pediatr Infect Dis J.* 2008;27(6):526-32.
8. Flores JA, Sierro FJ, Francés G, Vázquez A, Zamarren I. The last 100,000 years in the western Mediterranean: sea surface water and frontal dynamics as revealed by coccolithophores. *Marine Micropaleontol.* 1997;29(3-4):351-66.

9. Al-Ansari K, Sakran M, Davidson BL, El Sayyed R, Mahjoub H, Ibrahim K. Nebulized 5% or 3% hypertonic or 0.9% saline for treating acute bronchiolitis in infants. *J Pediatr.* 2010;157(4):630-4.
10. Baron J, El-Chaar G. Hypertonic saline for the treatment of bronchiolitis in infants and young children: a critical review of the literature. *J Pediatr Pharmacol Therapeut.* 2016;21(1):7-26.
11. Sarrell EM, Tal G, Witzling M, Someck E, Houri S, Cohen HA, et al. Nebulized 3% hypertonic saline solution treatment in ambulatory children with viral bronchiolitis decreases symptoms. *Chest.* 2002;122(6):2015-20.
12. Kuzik BA, Al Qadhi SA, Kent S, Flavin MP, Hopman W, Hotte S, et al. Nebulized hypertonic saline in the treatment of viral bronchiolitis in infants. *J Pediatr.* 2007;151(3):266-70.
13. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. *Clin Pharmacol Therapeut.* 2008;83(5):761-9.
14. Mazur NI, Caballero MT, Nunes MC. Severe respiratory syncytial virus infection in children: burden, management, and emerging therapies. *The Lancet.* 2024;404(10458):1143-56.
15. Ralston SL, Lieberthal AS, Meissner HC, Alverson BK, Baley JE, Gadomski AM, et al. Clinical practice guideline: the diagnosis, management, and prevention of bronchiolitis. *Pediatrics.* 2014;134(5):e1474-502.
16. Khanal A, Sharma A, Basnet S, Sharma PR, Gami FC. Nebulised hypertonic saline (3%) among children with mild to moderately severe bronchiolitis-a double blind randomized controlled trial. *BMC Pediatr.* 2015;15:1-8.
17. Malik G, Singh A, Singh K, Pannu MS, Singh P, Banga S, Jain R. A comparative study to assess the effects of nebulised 3% hypertonic saline, 0.9% normal saline and salbutamol in management of acute bronchiolitis among Indian children. *J Evolut Med Dental Sci.* 2015;4(21):3662-8.
18. Islam MS, Mollah MA, Khanam R, Chowdhury AS, Rahman MM, Al Baqui SA, Rashid MA. Comparative efficacy of nebulized 7% hypertonic saline versus 0.9% normal saline with salbutamol in children with acute bronchiolitis. *Bangladesh J Child Health.* 2019;43(2):80-4.
19. Restori KH, Srinivasa BT, Ward BJ, Fixman ED. Neonatal immunity, respiratory virus infections, and the development of asthma. *Front Immunol.* 2018;9:1249.
20. Kabra SK, Broor S, Lodha R, Maitreyi RS, Ghosh M, Pandey RM, Puranik M. Can we identify acute severe viral lower respiratory tract infection clinically? *Indian Pediatr.* 2004;41(3):245-9.
21. Alisamir M, Mirkarimi M, Mirzaee S, Heidari S, Barouti S, Mohammadi S. Characteristics and outcomes of patients admitted to a pediatric intensive Care Unit in Southwest of Iran. *Acta Medica Iranica.* 2022;60(10):646-54.
22. Silver AH, Esteban-Cruciani N, Azzarone G, Douglas LC, Lee DS, Liewehr S, et al. 3% hypertonic saline versus normal saline in inpatient bronchiolitis: a randomized controlled trial. *Pediatrics.* 2015;136(6):1036-43.
23. Amara S, Dicke T. Scientific Abstract Sessions. *J Allergy Clin Immunol.* 2007;119(1):S316-71.
24. Amin MR, Ahmmad BN, Rahman F, Hossain MM, Rashed SM. Magnitude of Pneumonia and Bronchiolitis and Their Treatment Modalities Practiced in Under Five Children Attending a Tertiary Care Hospital. *J Teach Asso.* 2023;36(2):163-70.
25. KB MK. Comparison of 3% saline vs normal saline as diluent for nebulisation in hospitalized young children with bronchiolitis: a randomized prospective clinical trial, Doctoral dissertation, Rajiv Gandhi University of Health Sciences, India. 2009.
26. Zhang L, Mendoza-Sassi RA, Wainwright CE, Aregbesola A, Klassen TP. Nebulised hypertonic saline solution for acute bronchiolitis in infants. *Cochrane Database Syst Rev.* 2023;4(4):CD006458.
27. Popp A, Mäki M. Changing pattern of childhood celiac disease epidemiology: contributing factors. *Front Pediat.* 2019;7:357.

Cite this article as: Khanom M, Sarkar PK, Sayeed KMI, Al Amin MM, Ferdous F, Tonny AS, et al. A comparative study of nebulized 3% hypertonic saline and normal saline in the management of respiratory syncytial virus-positive acute bronchiolitis in young infants. *Int J Contemp Pediatr* 2025;12:1310-5.