Case Report

DOI: https://dx.doi.org/10.18203/2349-3291.ijcp20250417

Case of infantile obesity

Rama Kaja, Ansar Murtuza Hussain, Surendranath, Smruthi Theja Godala, Sravya Chakiri*

Department of Paediatrics, Vijay Marie Hospital, Hyderabad, Telangana, India

Received: 11 December 2024 **Revised:** 13 January 2025 Accepted: 22 January 2025

*Correspondence: Dr. Sravya Chakiri,

E-mail: sravyachakiri@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Congenital leptin receptor deficiency is a rare autosomal recessive form of monogenic obesity caused by loss-offunction mutations in the leptin receptor function. Due to its subtle signs and symptoms early diagnosis of this becomes a challenge. We report a case of a 7-month-old male child who presented with the complaints of excessive weight gain on exclusive breast feeding with no dysmorphism or developmental delay. Whole exome sequencing helped in diagnosis of leptin receptor deficiency. Specific investigations are needed for diagnosis of genetic forms of obesity. Specific diagnosis helps to prognosticate and counsel parents and help physicians to improve their care in patients with severe early onset obesity.

Keywords: Leptin receptor, Targeted treatment, Infantile obesity

INTRODUCTION

Leptin, produced by adipose tissue, plays a crucial role in maintaining energy homeostasis by signaling the brain to regulate appetite and energy expenditure.1-7 Leptin receptor deficiency impairs this signaling pathway, leading to severe obesity, hyperphagia, and metabolic dysfunction.1 This case report contributes to the understanding of mutations of leptin/melanocortin pathway which could change the prognosis of rare severe forms of obesity in a patient presenting with a unique clinical and genetic profile.

CASE REPORT

A 7-month-old male child first born to second degree consanguineous marriage was brought to our hospital by the parents with the complaint of excessive weight gain since 3 months of age associated with hyperphagia. There was no history of dullness of activity, seizures, hypoglycemic episodes or feeding difficulties. Child was diagnosed with hypothyroidism one month back and was on thyroxine at a dose of 50 microgram per day.

The baby was delivered at full term by emergency lower segment caesarean section in view of antepartum hemorrhage with a birth weight of 2.9 kg. child cried immediately after birth and perinatal period was uneventful.

Antenatal targeted imaging for fetal anomalies was found to be normal. Growth scan was abnormal with intra uterine growth restriction of 2 weeks with adequate liquor. Child was on exclusive breast feeding since birth.

Mother has a history of seizure disorder for 13 years and was on anti-epileptic drugs since last 3 years. she had last seizure episode 1 year 6 months back. She was on phenytoin 100 milligrams twice a day during both pregnancy and lactation.

Child was immunized till date.

On physical examination we noticed short neck, brachydactyly, excessive skin folds in both bilateral upper and lower limbs and normal size of penis with bilateral palpable testis.

Central nervous system examination: did not reveal any abnormality.

Other systems were normal on clinical examination.

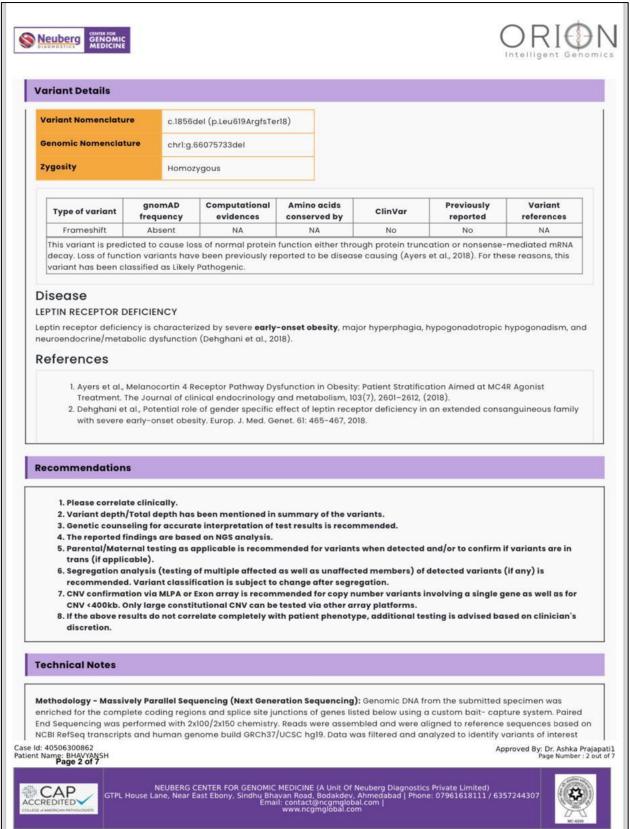


Figure 1: Clinical report.

Anthropometry

Anthropometry of patients showed in Table 1.

Table 1: Head circumference.

Variables	Observed	Expected	Percentile (%)
Height (cm)	70	69	+0.17SD, 56.6
Weight (kg)	16	11.5	+6.8SD, >99.9
HC (cm)	45	43	+0.68SD, 75.1

Investigations

Investigations were as-Hb-9.2 g/dL, IGF1 was normal, TSH: 12.6 (elevated), free T4: normal, HBA1C: 6.0, RBS: 126 mg/dl, total cholesterol: 184 mg/dl, HDL: 43 mg/dl (low), LDL: 94 mg/dl (low), triglycerides: 236 mg/dl (elevated), VLDL: 47 mg/dl (elevated), Sr insulin: 11.37 mU/L, Sr cortisol: 10.96, Sr calcium 10.1 and Sr PTH: 41.4 pg/ml.

2D ECHO: Structurally normal heart.

USG abdomen: Mild prominent liver with normal echotexture.

MRI brain: Normal sized pituitary gland with no obvious lesions.

Whole exome sequencing: Autosomal recessive leptin receptor deficiency.

DISCUSSION

The leptin hormone has effects on hunger and energy use by regulating adipose tissue mass through hypothalamus. The hormone acts through leptin receptor which interacts with gangliosides and regulate the energy metabolism and body weight. Variation in leptin receptor have been associated with obesity and increased susceptibility to infections due to its partial effect on immune function.⁸ This rare endocrine disorder is estimated to affect 1.34 per 1 million people all over the world.¹¹

In our case 7 month old male child was bought with excessive weight gain. Dietary history was analysed and nutritional cause of obesity was ruled out. All the blood investigations and imaging done were not conclusive of the cause of the early onset obesity like the other causes mentioned in previous study. 12 To rule out genetic causes of obesity whole exome sequencing was done which revealed congenital leptin receptor deficiency. Parents were advised about dietary management by the paediatric endocrinologist who also counselled about the nature of the disease, impact on development and advised genetic counselling before planning second pregnancy. 10 This case report underscores the significance of diagnosing a rare genetic obesity disorder within a family. 9 It also emphasis the crucial role of genetic testing for patients

suspected of having a genetic obesity condition, as it can pave the way for personalized treatment approaches, including guidance from specialized healthcare providers, informed caregivers and potentially targeted pharmacotherapy.⁹

CONCLUSION

Diagnosis of this rare genetic obesity has a deep impact on the life of the child and the family. Congenital leptin receptor deficiency should be considered in the differential diagnosis in any child with hyperphagia and severe obesity in the absence of dysmorphism or developmental delay. Parents perception need to be understood and extensively counselled about the nature of disease and outcome.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- 1. Paz-Filho G, Mastronardi C, Delibasi T, Wong ML, Licinio J. Congenital leptin deficiency: diagnosis and effects of leptin replacement therapy. Arq Bras Endocrinol Metabol. 2010;54(8):690-7.
- Farooqi IS, Wangensteen T, Collins S, Kimber W, Matarese G, Keogh JM, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. 2007;356(3):237-47.
- 3. Huvenne H, Dubern B, Clément K, Poitou C. Rare Genetic Forms of Obesity: Clinical Approach and Current Treatments in 2016. Obes Facts. 2016;9(3):158-73.
- Von Schnurbein J, Zorn S, Nunziata A, Brandt S, Moepps B, Funcke JB, et al. Classification of Congenital Leptin Deficiency. J Clin Endocrinol Metabol. 2024;109(10):2602-16.
- Saad MF, Damani S, Gingerich RL, Riad-Gabriel MG, Khan A, Boyadjian R, et al. Sexual Dimorphism in Plasma Leptin Concentration. J Clin Endocrinol Metabol. 1997;82(2):579-84.
- 6. Collins S, Kuhn C, Petro A, Swick AG, Chrunyk BA, Surwit RS. Role of leptin in fat regulation. Nature. 1996;380(6576):677.
- 7. Kelesidis T, Kelesidis I, Chou S, Mantzoros CS. Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med. 2010;152(2):93-100.
- 8. Chan JL, Matarese G, Shetty GK, Raciti P, Kelesidis I, Aufiero D, et al. Differential regulation of metabolic, neuroendocrine, and immune function by leptin in humans. Proc Natl Acad Sci USA. 2006;103(22):8481-6.
- 9. Kalinderi K, Goula V, Sapountzi E, Tsinopoulou VR, Fidani L. Syndromic and Monogenic Obesity: New Opportunities Due to Genetic-Based Pharmacological Treatment. Children. 2024;11(2):153.

- Mohammed I, Haris B, Al-Barazenji T, Vasudeva D, Tomei S, Al Azwani I, et al. Understanding the Genetics of Early-Onset Obesity in a Cohort of Children From Qatar. J Clin Endocrinol Metabol. 2023;108(12):3201-13.
- Kleinendorst L, Abawi O, Van der Kamp HJ, Alders M, Meijers-Heijboer HEJ, van Rossum EFC, et al. Leptin receptor deficiency: a systematic literature review and prevalence estimation based on population genetics. Eur J Endocrinol. 2020;182(1):47-56.
- 12. Xu S, Xue Y. Pediatric obesity: Causes, symptoms, prevention and treatment. Exp Ther Med. 2016;11(1):15-20.

Cite this article as: Kaja R, Hussain AM, Surendranath, Godala ST, Chakiri S. Case of infantile obesity. Int J Contemp Pediatr 2025;12:502-5.