

## Original Research Article

DOI: <https://dx.doi.org/10.18203/2349-3291.ijcp20243466>

# Prevalence of stunting, thinness and anaemia among adolescents and their association with demographics and dietary habits

Gudiya Kumari<sup>1</sup>, Ekansh Rathoria<sup>1\*</sup>, Faraz Ahmad Khan<sup>1</sup>, Saurabh Kumar Singh<sup>1</sup>, Rohitash Lahari<sup>1</sup>, Richa Rathoria<sup>2</sup>, Utkarsh Bansal<sup>3</sup>, Amrita Singh<sup>1</sup>

<sup>1</sup>Department of Pediatrics, Hind Institute of Medical Sciences Sitapur, Uttar Pradesh, India

<sup>2</sup>Department of Obstetrics and Gynaecology, Hind Institute of Medical Sciences Sitapur, Uttar Pradesh, India

<sup>3</sup>Department of Pediatrics, Hind Institute of Medical Sciences, Barabanki, Uttar Pradesh, India

Received: 27 September 2024

Accepted: 04 November 2024

**\*Correspondence:**

Dr. Ekansh Rathoria,

E-mail: rathoriaekansh@yahoo.com

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

## ABSTRACT

**Background:** Adolescence marks the pinnacle of the nutritional need, therefore, it's crucial to detect undernutrition and anemia in adolescents before they exhibit adverse effects. To assess the prevalence of undernutrition and anemia among adolescents and their association with demographic factors and dietary habits.

**Methods:** A cross-sectional study was conducted over 18 months at the Hind Institute of Medical Sciences, involving 250 adolescents aged 10-19 years. Data collection included anthropometric measurements, hemoglobin assessment, and a structured questionnaire capturing demographic characteristics and dietary habits. Statistical analysis (Descriptive statistics, Chi-square test) was performed using SPSS version 23.0. A p value <0.05 was considered significant.

**Results:** The study found that 29.6% of adolescents were stunted, 27.6% were thin and 48% had anemia, with 11.6% classified as mild, 30% as moderate and 6.4% as severe anemia. No significant association was reported of stunting with demographic parameters. A significant association was found between thinness and joint family ( $p=0.044$ ) but not with any other demographic parameter. An inverse relationship of Junk food intake with stunting ( $p<0.0001$ ) and thinness ( $p<0.0001$ ) was inferred. Anemia was found to be significantly associated with advancing adolescent age ( $p<0.0001$ ), female gender ( $p<0.0001$ ), nuclear family ( $p<0.0001$ ), lower socioeconomic status ( $p=0.041$ ), and vegetarian diet ( $p=0.009$ ).

**Conclusions:** The high prevalence of undernutrition and anemia among adolescents highlights the urgent need for targeted nutritional interventions. Regular anthropometric assessments and nutritional education programs are essential to address these health issues.

**Keywords:** Adolescence, Anthropometric measurements, Anemia mukt bharat, Nutritional status, Nutritional education, Poshan abhiyaan, Undernutrition

## INTRODUCTION

Adolescence is a critical changeover stage from childhood to adulthood during which changes happen initially in physical development and reproductive abilities, followed by psychological and social maturity.<sup>1</sup> The behavior and lifestyle developed throughout

adolescence are continued throughout life.<sup>2</sup> According to the World Health Organization (WHO), this stage spans from 10 to 19 years and is categorized into early adolescents (10-13 years), mid adolescents (14-16 years), and late adolescents (17-19 years).<sup>3</sup> In India, around 253 million individuals (20% of the total population) fall into the adolescent category.<sup>4</sup> Adolescence marks the pinnacle

of the nutritional need, therefore, it's crucial to detect undernutrition and anemia in adolescents before they exhibit adverse effects.<sup>5</sup> Adolescent undernutrition is indicated by both stunting and thinness.<sup>5</sup> The prevalence of stunting and thinness among Indian adolescents was 27.4% and 24.4% respectively according to the Comprehensive National Nutrition Survey (CNNS-2016–18) conducted in India to find out more about the eating habits, hygiene habits, and general health and nutrition of adolescents.<sup>5</sup>

Growth charts tailored to each nation are required to track the development of children aged five to eighteen years.<sup>6</sup> Based on compiled national data from published studies conducted on 87022 children and adolescents who appeared to be in good health over the previous ten years, the IAP Growth Chart Committee created revised IAP growth references for Indian children aged five to eighteen for anthropometric assessment.<sup>6</sup>

Various demographic factors are associated with adolescent undernutrition e.g., illiteracy, lower socioeconomic status, livelihood, family type and dietary habits, etc.<sup>7</sup> A dearth of representative data on the prevalence, burden, and related determinants of anemia in adolescents hinders India's efforts to reduce anemia.<sup>8</sup> The prevalence of anemia was 28.5% among adolescents as per CNNS data (boys: 17.6%, girls: 39.6%).<sup>8</sup> About 72 million Indian adolescents are anemic, with the state of Uttar Pradesh comprising twice as many as any other state.<sup>8</sup>

According to NFHS projections, the prevalence of anemia among Indian teenagers aged 15-19 years has marginally increased between 2005 and 2021 (boys 30.2% to 31.1%, girls 55.8% to 59.1%).<sup>8</sup> Anemia can be caused by both nutritional and non-nutritional factors.<sup>8</sup> Causes of anemia include concurrent micronutrient deficits in iron, folic acid, vitamin B12 and vitamin A, chronic inflammatory diseases, parasite infections, malaria, hereditary hemoglobin abnormalities, etc.<sup>8,9</sup> Among them, iron deficiency is frequently thought to be the main cause of anemia.<sup>8,9</sup>

Anemia has negative long-term implications in addition to its current effects on health.<sup>9</sup> Academic performance, learning and cognitive function are all negatively impacted due to anemia.<sup>9</sup> The current study aims to evaluate the prevalence of undernutrition (stunting and thinness) and anemia among adolescents and their association with demographic factors and dietary habits.

## METHODS

### Study design

This cross-sectional study was carried out among adolescents attending the Outpatient department (OPD) in the Department of Pediatrics at Hind Institute of Medical Sciences, Mau, Ataria, Sitapur, Uttar Pradesh over 18

months after obtaining ethical approval from Institutes Ethical Committee and informed consent from parents and assent from the adolescents

### Inclusion criteria

Adolescents aged 10-19 years of either gender were included.

### Exclusion criteria

Patients having trauma, chronic illness like HIV, heart disease and chronic liver disease were excluded.

### Sampling

We used a convenient sampling method. Sample size (n) of 246 was calculated using OpenEpi online software for sample size calculation taking the prevalence of 20% adolescent population from WHO data, 95% confidence interval and a margin of error of 5%.<sup>4,10</sup> The actual study was done on 250 adolescents.

### Data Collection

For the data collection of the study population; a questionnaire, anthropometric measurements, and hemoglobin estimation were used. Details of the adolescents were noted down on a predesigned proforma.

### Questionnaire

A questionnaire consisting of different components which included personal details, demographic characteristics, and, dietary history was used as a data collection tool. A detailed history was taken and clinical examination were performed. Demographic characteristics included age, gender, religion, type of family, livelihood, and socioeconomic status using the Modified Kuppuswamy Socioeconomic Status Scale 2023.<sup>11</sup> Dietary history including the type of diet i.e. vegetarian and non-vegetarian diet and frequency of junk food intake.

### Anthropometric measurements

All anthropometric measurements were taken twice from each child by a nurse/doctor according to standardized procedures of the National Institute of Nutrition. Weight was recorded in kilogram (kg), using an electronic weighing scale, nearest to 0.01 kg. The weighing scale was checked for zero each time before use. Undernutrition is low weight for age. Standing height was recorded with a Stadiometer in cm using a standardized method. BMI is calculated as the ratio of weight (in kg) to the square of height (in meters) (BMI=Weight/Height<sup>2</sup>).

BMI was used to assess the nutritional status of adolescents. Weight for age Z score (Standard deviation score=SDS), Height for age Z-score, and BMI for age Z-

scores were plotted using the WHO Growth reference data for 5-19 years.<sup>12-15</sup> Adolescent undernutrition is indicated by both stunting and thinness.

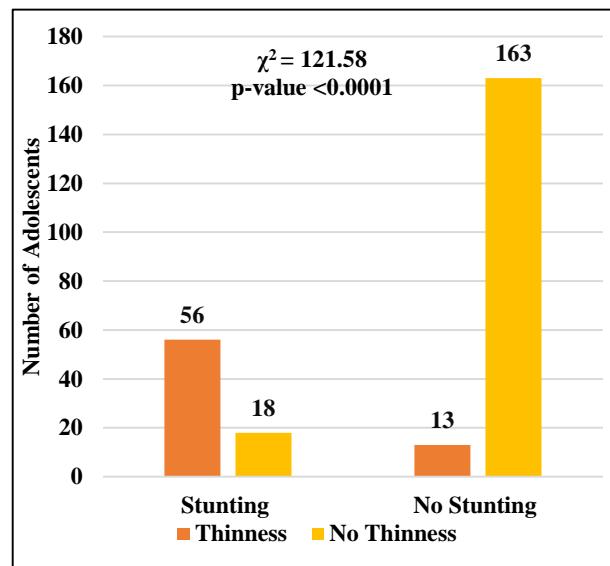
### Stunting

Stunting is low height for age. WHO Growth reference data for 5-19 years of children categorize stunting as height for age Z-score<-2SDS while severe stunting as height for age Z-score<-3SDS.<sup>13,14</sup>

### Thinness

Thinness is a low BMI for age. WHO growth reference data for 5-19 years of children categorize thinness as BMI Z-score<-2SDS while severe thinness as BMI Z-score <-3SDS.<sup>14,15</sup>

### Hematological assessment


For complete blood count a 2 ml blood sample was taken by venipuncture using a sterile syringe and blood was transferred to a test tube containing Ethylenediaminetetraacetic acid (EDTA). Collected blood samples were analyzed in the pathology lab in a 5-part hematology analyzer (Mindray). Anemia was categorized as per WHO guidelines Hemoglobin <115 g/l for boys and girls 10-11 years old, Hb <120 g/l for boys 12-14 years old and girls 12-19 years old, and Hb <130 g/l for boys 15-19 years old.<sup>16</sup>

The grades of anemia severity are summarized in Table 1 as per WHO guidelines.<sup>16</sup> All data was entered in the Microsoft Excel sheet and analyzed using SPSS version 23.0. Mean and standard deviation were calculated for quantitative variables. Frequency and percentage were calculated for qualitative variables. For the association between two qualitative variables, the Chi-square test was used. A p value<0.05 was considered as the data statistically significant.

## RESULTS

The mean (SD) age of early, mid, and late adolescents was 11.35 (0.782), 14.95 (0.779) and 17.84 (0.840) years respectively. The overall mean age of adolescents under study was 14.47 (2.64) years. The demographic

parameters and dietary habits of adolescents are summarized in Table 2. The mean weight, height, and BMI were 39.61 (11.29) kg, 149.16 (13.02) cm and 17.37 (2.56) kg/m<sup>2</sup> respectively. The mean weight Z-score, height Z-score, and BMI Z-score were -1.39 (1.29), -1.21 (0.96) and -0.90 (0.98) respectively. The mean hemoglobin (gm/dl) and PCV were 11.39 (1.96) gm/dl and 34.74 (5.98) % respectively.



**Figure 1: Association of thinness with stunting (n=250)\*.**

The prevalence of stunting, thinness, and anemia was 29.6%, 27.6% and 48% among the study adolescents respectively. Mild, moderate, and severe anemia were present in 11.6%, 30% and 6.4% of cases respectively. The association of stunting with demographics and dietary habits is summarized in Table 3. The association of thinness with demographics and dietary habits is outlined in Table 4.

The double burden of thinness and stunting was seen in 56 (22.4%) and there was a significant association between the two (p<0.0001) (Figure 1). Table 5 shows the association of anemia with demographics and dietary habits. There was no significant association of anemia with stunting (p=0.492) and thinness (p=0.377).

**Table 1: Grades of anaemia severity as per WHO guidelines.<sup>16</sup>**

| Population                                      | Haemoglobin concentration (g/l) |              |                  |                |
|-------------------------------------------------|---------------------------------|--------------|------------------|----------------|
|                                                 | No anaemia                      | Mild anaemia | Moderate anaemia | Severe anaemia |
| <b>Children, 5-11 years</b>                     |                                 |              |                  |                |
| <b>Children, 12-14 years, nonpregnant girls</b> | ≥115                            | 110-114      | 80-109           | <80            |
| <b>Children, 12-14 years, boys</b>              | ≥120                            | 110-119      | 80-109           | <80            |
| <b>Adults, 15-65 years, nonpregnant women</b>   | ≥120                            | 110-119      | 80-109           | <80            |
| <b>Adults, 15-65 years men</b>                  | ≥130                            | 110-129      | 80-109           | <80            |

**Table 2: Demographic parameters and dietary habits of adolescents (n=250).**

| Demographic parameters     |                                 | Number | %    |
|----------------------------|---------------------------------|--------|------|
| Age groups                 | Early adolescents (10-13 years) | 85     | 34   |
|                            | Mid adolescents (14-16 years)   | 101    | 40.4 |
|                            | Late adolescents (17-19 years)  | 64     | 25.6 |
| Gender                     | Male                            | 119    | 47.6 |
|                            | Female                          | 131    | 52.4 |
| Religion                   | Hindu                           | 171    | 68.4 |
|                            | Muslim                          | 72     | 28.8 |
|                            | Others                          | 7      | 2.8  |
| Type of family             | Nuclear family                  | 90     | 36   |
|                            | Joint family                    | 160    | 64   |
| Livelihood                 | Rural                           | 199    | 79.6 |
|                            | Urban                           | 51     | 20.4 |
| Socioeconomic status       | Upper                           | 7      | 2.8  |
|                            | Upper middle                    | 92     | 36.8 |
|                            | Lower middle                    | 79     | 31.6 |
|                            | Upper lower                     | 57     | 22.8 |
|                            | Lower                           | 15     | 6    |
| Dietary habits             |                                 |        |      |
| Type of diet               | Vegetarian                      | 163    | 65.2 |
|                            | Non-vegetarian                  | 87     | 34.8 |
| Junk food intake frequency | Nil                             | 135    | 54   |
|                            | Daily                           | 30     | 12   |
|                            | Weekly                          | 29     | 11.6 |
|                            | Once a month                    | 56     | 22.4 |

**Table 3: Association of stunting with demographics and dietary habits (n=250).**

| Demographic parameters        | Stunting       |           | X <sup>2</sup> | P value |       |
|-------------------------------|----------------|-----------|----------------|---------|-------|
|                               | Yes (%)        | No (%)    |                |         |       |
| Adolescent age groups         | Early          | 26 (10.4) | 59 (23.6)      | 0.381   | 0.826 |
|                               | Mid            | 31 (12.4) | 70 (28)        |         |       |
|                               | Late           | 17 (6.8)  | 47 (18.8)      |         |       |
| Gender                        | Male           | 31 (12.4) | 88 (35.2)      | 1.373   | 0.241 |
|                               | Female         | 43 (17.2) | 88 (35.2)      |         |       |
| Religion                      | Hindu          | 48 (19.2) | 123 (49.2)     | 2.772   | 0.250 |
|                               | Muslim         | 22 (8.8)  | 50 (20)        |         |       |
|                               | Others         | 4 (1.6)   | 3 (1.2)        |         |       |
| Type of family                | Nuclear        | 23 (9.2)  | 67 (26.8)      | 1.104   | 0.293 |
|                               | Joint          | 51 (20.4) | 109 (43.6)     |         |       |
| Socioeconomic status          | Upper          | 1 (0.4)   | 6 (2.4)        | 9.029   | 0.060 |
|                               | Upper middle   | 26 (10.4) | 66 (26.4)      |         |       |
|                               | Lower middle   | 20 (8)    | 59 (23.6)      |         |       |
|                               | Upper lower    | 25 (10)   | 32 (12.8)      |         |       |
|                               | Lower          | 2 (0.8)   | 13 (5.2)       |         |       |
| Livelihood                    | Rural          | 59 (23.6) | 140 (56)       | 0.001   | 0.974 |
|                               | Urban          | 15 (6)    | 36 (14.4)      |         |       |
| Dietary habits                |                |           |                |         |       |
| Type of diet                  | Vegetarian     | 52 (20.8) | 111 (44.4)     | 1.191   | 0.275 |
|                               | Non-vegetarian | 22 (8.8)  | 65 (26)        |         |       |
| Frequency of junk food intake | No             | 31 (12.4) | 104 (41.6)     | 13.445  | 0.004 |
|                               | Daily          | 17 (6.8)  | 13 (5.2)       |         |       |
|                               | Weekly         | 9 (3.6)   | 20 (8)         |         |       |
|                               | Once a month   | 17 (6.8)  | 39 (15.6)      |         |       |

**Table 4: Association of thinness with demographics and dietary habits (n=250).**

| Demographic parameters        | Thinness       |           | X <sup>2</sup> | P value |         |
|-------------------------------|----------------|-----------|----------------|---------|---------|
|                               | Yes (%)        | No (%)    |                |         |         |
| Adolescent age groups         | Early          | 28 (11.2) | 57 (22.8)      | 5.157   | 0.076   |
|                               | Mid            | 20 (8%)   | 81 (32.4)      |         |         |
|                               | Late           | 21 (8.4)  | 43 (17.2)      |         |         |
| Gender                        | Male           | 37 (14.8) | 82 (32.8)      | 1.386   | 0.239   |
|                               | Female         | 32 (12.8) | 99 (39.6)      |         |         |
| Religion                      | Hindu          | 43 (17.2) | 128 (51.2)     | 3.887   | 0.143   |
|                               | Muslim         | 22 (8.8)  | 50 (20)        |         |         |
|                               | Others         | 4 (1.6)   | 3 (1.2)        |         |         |
| Type of family                | Nuclear        | 18 (7.2)  | 72 (28.8)      | 4.065   | 0.044   |
|                               | Joint          | 51 (20.4) | 109 (43.6)     |         |         |
| Socioeconomic status          | Upper          | 1         | 6              | 1.772   | 0.778   |
|                               | Upper middle   | 28        | 64             |         |         |
|                               | Lower middle   | 20        | 59             |         |         |
|                               | Upper lower    | 17        | 40             |         |         |
| Livelihood                    | Lower          | 3         | 12             | 0.001   | 0.979   |
|                               | Rural          | 55 (22)   | 144 (57.6)     |         |         |
|                               | Urban          | 14 (5.6)  | 37 (14.8)      |         |         |
| <b>Dietary habits</b>         |                |           |                |         |         |
| Type of diet                  | Vegetarian     | 41 (16.4) | 122 (48.8)     | 1.403   | 0.236   |
|                               | Non-vegetarian | 28 (11.2) | 59 (23.6)      |         |         |
| Frequency of junk food intake | No             | 32 (12.8) | 103 (41.2)     | 19.731  | <0.0001 |
|                               | Daily          | 15 (6)    | 15 (6)         |         |         |
|                               | Weekly         | 14 (5.6)  | 15 (6)         |         |         |
|                               | Once a month   | 8 (3.2)   | 48 (19.2)      |         |         |

**Table 5: Association of anemia with demographics and dietary habits (n=250).**

| Demographic parameters        | Anemia         |            | X <sup>2</sup> | P value |         |
|-------------------------------|----------------|------------|----------------|---------|---------|
|                               | Yes (%)        | No (%)     |                |         |         |
| Adolescent age groups         | Early          | 25 (10)    | 60 (24)        | 19.343  | <0.0001 |
|                               | Mid            | 62 (24.8)  | 39 (15.6)      |         |         |
|                               | Late           | 33 (13.2)  | 31 (12.4)      |         |         |
| Gender                        | Male           | 43 (17.2)  | 76 (30.3)      | 12.810  | <0.0001 |
|                               | Female         | 77 (30.8)  | 54 (21.6)      |         |         |
| Religion                      | Hindu          | 81 (32.4)  | 90 (36)        | 4.152   | 0.125   |
|                               | Muslim         | 33 (13.2)  | 39 (15.6)      |         |         |
|                               | Others         | 6 (2.4)    | 1 (0.4)        |         |         |
| Type of family                | Nuclear        | 53 (21.2)  | 37 (14.8)      | 6.680   | <0.0001 |
|                               | Joint          | 67 (26.8)  | 93 (37.2)      |         |         |
| Socioeconomic status          | Upper          | 4 (1.6)    | 3 (1.2)        | 9.963   | 0.041   |
|                               | Upper middle   | 41 (16.4)  | 51 (20.4)      |         |         |
|                               | Lower middle   | 30 (12)    | 49 (19.6)      |         |         |
|                               | Upper lower    | 36 (14.4)  | 21 (8.4)       |         |         |
| Livelihood                    | Lower          | 41 (16.4)  | 51 (20.4)      | 0.216   | 0.642   |
|                               | Rural          | 97 (38.8)  | 102 (40.8)     |         |         |
| Dietary habits                | Urban          | 23 (9.2)   | 28 (11.2)      | 6.728   | <0.009  |
|                               | Vegetarian     | 88 (35.2%) | 75 (30%)       |         |         |
|                               | Non-vegetarian | 32 (12.8%) | 55 (22%)       |         |         |
| Frequency of junk food intake | No             | 57 (22.8%) | 78 (31.2%)     | 4.850   | 0.183   |
|                               | Daily          | 15 (6%)    | 15 (6%)        |         |         |
|                               | Weekly         | 18 (7.2%)  | 11 (4.4%)      |         |         |
|                               | Once a month   | 30 (12%)   | 26 (10.4%)     |         |         |

## DISCUSSION

This study focuses on the anthropometric measurements, undernutrition, and anemia prevalence among adolescents, providing crucial insights into their nutritional status and health risks. The mean (SD) age of adolescents under study was 14.47 (2.64) years which was comparable to the average age of Indian adolescents of 14.4 (2.8) years.<sup>5</sup> The Male: Female ratio was 1:1.1 which was comparable to a study by Kumar M et al.<sup>5</sup> The prevalence of stunting, thinness, and anemia was 29.6%, 27.6% and 48% among the study adolescents respectively which was in accordance with the comprehensive national nutrition survey (CNNS-2016-18) data of prevalence of stunting (27.2%), thinness (24.1%), and anemia (28.5%) among adolescents.<sup>5</sup> Similarly, Pandurangi R et al reported the prevalence of stunting and thinness of 27.4% and 24.4% respectively among Indian adolescents.<sup>17</sup>

In the current study, no significant association was found between demographic characteristics and stunting among adolescents ( $p>0.05$ ). In contrast, Kumar et al reported higher stunting prevalence during late adolescence age (OR 1.21, 95 % CI 1.15, 1.27).<sup>5</sup> Pandurangi R et al, reported that stunting was more likely to occur in adolescents in the 15–19 age group (AOR 1.23, 95% CI 1.11, 1.36) than in the 10–14 age group, and in females (AOR 1.20, 1.08, 1.33) compared to males but they found no significant association between stunting with religion and livelihood.<sup>17</sup> In contrast, Puri et al, reported an association of underweight with early adolescent age, male gender, Hindu religion, and adolescents from nuclear families.<sup>18</sup> Johnson et al reported an association of stunting with lower socio-economic class [AOR=2.75 (1.39-5.41),  $p=0.03$ ] and late adolescence age (AOR=1.90 (1.24-2.90),  $p=0.03$ ).<sup>19</sup>

In the present study, there was no significant association found between thinness and any demographic factor ( $p>0.05$ ) except for joint family type ( $p=0.044$ ). In comparison to our study, Mengesha DK et al study from Ethiopia found thinness in adolescents was significantly associated with early adolescent age, male gender, rural livelihood and lower socioeconomic status.<sup>20</sup> Akin to our study Pandurangi R et al study revealed no significant association between thinness and religion.<sup>17</sup> Similar to our research, Chaulagain K et al reported a significant association of thinness in adolescents living in joint families with  $>4$  family members.<sup>21</sup> This could be because of the distribution of family resources among members leading to deficient intake. The double burden of thinness and stunting was seen in 22.4% and there was a significant association between the two ( $p <0.0001$ ) which was comparable to a study by Pandurangi R et al that found the 8.6% double burden of stunting and thinness among adolescents.<sup>17</sup>

There was no significant association of stunting and thinness with the type of diet however stunting and

thinness were significantly associated with the lower frequency of junk food intake in our study. In comparison to our study, Johnson et al reported no significant association of stunting with type of diet and frequency of junk food intake.<sup>19</sup>

Li L et al study did not find any significant association between stunting and thinness with the frequency of junk food intake.<sup>22</sup> Adity et al study reported a significant association of daily junk food intake with overweight and obesity ( $p<0.0001$ ).<sup>23</sup> Junk food consumption is likely to increase obesity and therefore an inverse relationship was inferred by our study also.

In this study, adolescent anemia was significantly associated with advancing adolescent age ( $p<0.0001$ ), female gender ( $p<0.0001$ ), lower socioeconomic status ( $p=0.041$ ) and nuclear family ( $p<0.0001$ ) while no significant association was seen between different religions ( $p=0.125$ ) and livelihood ( $p=0.642$ ). This was comparable to a study by Chauhan et al that reported a significant association of anemia with late adolescent age, female gender, lower education status and rural livelihood.<sup>24</sup>

Similarly, Kumar et al, also reported similar findings.<sup>5</sup> In comparison, the Agarwal et al study found no significant association of anemia with religion, type of family, and socioeconomic status.<sup>25</sup> Anemia prevalence may be slightly higher as reported by the national average as our study participants were mainly from the rural background with a higher proportion lower socioeconomic status and vegetarian diet.<sup>5</sup>

There was a significant association found between anemia and a vegetarian diet however anemia was not significantly associated with the frequency of junk food intake in our study. Comparably, Agarwal et al did not report any association of anemia with dietary patterns.<sup>25</sup>

No significant association of anemia was seen with stunting and thinness in this study. In contrast, Yusufu et al study revealed higher odds of anemia in stunted adolescents than in non-stunted students.<sup>26</sup> Differing from our study, Sidenur et al reported a significant association of anemia in thin adolescents.<sup>27</sup>

The Government of India's flagship program, Anemia Mukt Bharat, focuses on preventative and therapeutic measures to eliminate anemia through a multi-sectoral and multi-stakeholder approach.<sup>28</sup> As a component of the National Nutrition Mission (Poshan Abhiyaan), the initiative supports India's efforts to meet the Sustainable Development Goals.<sup>29</sup> These programs need intensification in light of the findings of the present study and also those adolescents with severe anemia, thinness, and stunting should be screened in schools and referred to health facilities for early identification of the cause and its management.<sup>30</sup>

## CONCLUSION

The study concluded the prevalence of stunting, thinness, and anaemia as 29.6%, 27.6% and 48% respectively. Anaemia was found to be significantly associated with advancing adolescent age, female gender, nuclear family, lower socioeconomic status and vegetarian diet. The high prevalence of undernutrition and anaemia among adolescents highlights the urgent need for targeted nutritional interventions. Regular anthropometric assessments and nutritional education programs are essential to address these health issues.

*Funding: No funding sources*

*Conflict of interest: None declared*

*Ethical approval: The study was approved by the Institutional Ethics Committee*

## REFERENCES

1. Bajpai A, Bansal U, Rathoria R, Rathoria E, Singh V, Singh GK, et al. A prospective study of the age at menarche in north Indian girls, its association with the tanner stage, and the secular trend. *Cureus*. 2023;15:9.
2. Bansal U, Raja A, Agarwal P, Rathoria E, Gupta A, Gupta NB et al. The influence of family history of cardiovascular disease on blood pressure, waist hip ratio and body mass index in adolescents. *Int J Contemp Pediatr*. 2020;7(4):733.
3. Rathoria E, Rathoria R, Bansal U, Agarwal A. Prevalence of overweight and obesity in adolescents from eastern Uttar Pradesh. *Int J Sci Res*. 2021;29;10(1):49-51.
4. Barua A, Watson K, Plesons M, Chandra-Mouli V, Sharma K. Adolescent health programming in India: a rapid review. *Reproductive Health*. 2020;3;17(1):87.
5. Kumar M, Mohanty PC. Undernutrition and anaemia among Indian adolescents: role of dietary diversity and hygiene practices. *Journal of Nutritional Science*. 2023;12:33.
6. Khadilkar V, Yadav S, Agrawal KK, Tamboli S, Banerjee M, Cherian A et al. Revised IAP growth charts for height, weight and body mass index for 5- to 18-year-old Indian children. *Indian pediatrics*. 2015;52:47-55.
7. Pal A, Pari AK, Sinha A, Dhara PC. Prevalence of undernutrition and associated factors: A cross-sectional study among rural adolescents in West Bengal, India. *Int J Pediat Adoles Med*. 2017;1;4(1):9-18.
8. Scott S, Lahiri A, Sethi V, de Wagt A, Menon P, Yadav K et al. Anaemia in Indians aged 10-19 years: Prevalence, burden and associated factors at national and regional levels. *Maternal & child nutrition*. 2022;18(4):13391.
9. Chakrabarty M, Singh A, Singh S, Chowdhury S. Is the burden of anaemia among Indian adolescent women increasing? Evidence from Indian Demographic and Health Surveys (2015-21). *PLOS Global Public Health*. 2023;6;3(9):2117.
10. Sullivan KM, Dean AG, Mir RA. OpenEpi - toolkit shell for developing new applications. *Openepi.com*. Available at: <https://www.openepi.com/SampleSize>. Accessed on 18 August 2024.
11. Dalvi T, Kalghatgi S. A 2023 update of Kupp swamy socioeconomic status classification scale for the Indian population. *J Indian Assoc Public Health Dent*. 2023;1;21(3):282-3.
12. Growth reference data for 5-19 years. 2024. Available at: <https://www.who.int/tools/growth-reference-data>. Accessed on 12 August 2024.
13. Height-for-age (5-19 years). *Who.int*. 2023. Available at: <https://www.who.int/tools/growth-reference-data>. Accessed on 19 August 2024.
14. Bhargava M, Bhargava A, Ghate SD, Rao RS. Nutritional status of Indian adolescents (15-19 years) from National Family Health Surveys 3 and 4: Revised estimates using WHO 2007 Growth reference. *PloS one*. 2020;22;15(6):234570.
15. BMI-for-age (5-19 years). *Who.int*. Available at: <https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age>. Accessed on 22 August 2024.
16. Guideline on haemoglobin cutoffs to define anaemia in individuals and populations. *Who.int*. World Health Organization. Available at <https://www.who.int/publications/i/item>. Accessed on 25 August 2024.
17. Pandurangi R, Mummadikar MK, Challa S, Reddy NS, Kaliaperumal V, Babu K et al. Burden and predictors of malnutrition among Indian adolescents (10-19 years): insights from comprehensive national nutrition survey data. *Frontiers in Public Health*. 2022;15;10:877073.
18. Puri A, Adhikari C. Nutritional Status and its Associated Factors among Adolescents. *J Health and Allied Sci*. 2018;7(1):15-26.
19. Johnson AR, Balasubramanya B, Thimmaiah S. Stunting and its determinants among adolescents in four schools of Bangalore city: Height for age-a vital metric for nutritional assessment. *Indian J Comm Health*. 2022;31;34(1):111-7.
20. Mengesha DK, Prasad RP, Asres DT. Prevalence and Associated factors of thinness among adolescent students in Finote Selam Town, Northwest Ethiopia. *The Sci Wor J*. 2020;1:9170301.
21. Chaulagain K. Prevalence and associated factors of stunting and thinness among school adolescents living in a municipality of Nepal. *World J Nutrition and Health*. 2020;8(1):7-12.
22. Li L, Sun N, Zhang L, Xu G, Liu J, Hu J, et al. Fast-food consumption among young adolescents aged 12–15 years in 54 low-and middle-income countries. *Global health action*. 2020;31;13(1):1795438.
23. Singh A, Rathoria E, Singh SK, Rathoria R, Yadav SK, Bansal U. Prevalence of overweight and obesity, and associations with socio-demographic

and etiological factors. *Int J Contemp Pediatr.* 2024;11:1400-5.

- 24. Chauhan S, Kumar P, Marbaniang SP, Srivastava S, Patel R. Prevalence and predictors of anaemia among adolescents in Bihar and Uttar Pradesh, India. *Scientific Reports.* 2022;17;12(1):8197.
- 25. Agrawal A, Shetty A, Jacob GP, Kamath A. Anaemia among adolescents in a coastal district of India. *National J Comm Med.* 2018;30;9(06):396-401.
- 26. Yusufu I, Cliffer IR, Yussuf MH, Anthony C, Mapendo F, Abdulla S et al. Factors associated with anemia among school-going adolescents aged 10–17 years in Zanzibar, Tanzania: a cross sectional study. *BMC Public Health.* 2023;18;23(1):1814.
- 27. Sidenur B, Shankar G. A cross sectional study of anaemia among adolescent girls in a Women” s College in Bagalkot, Karnataka. *Indian J of Forensic and Comm Med.* 2017;4(3):167-70.
- 28. Sinha A, P P, Chakraborty H, Barnwal RK, Sinha R. Burden of neural tube defects in India: a systematic review and meta-analysis. *Child's Nervous System.* 2024;2;1-3.
- 29. Poshan abhiyaan. 2024. Available at: <https://www.mygov.in/campaigns/poshan-abhiyaan>. Accessed on 27-August 2024.
- 30. Bansal U. School Health Interventions as Entry Points. In: Patil G, Kanikar A, Luiz N, Chatterjee S, editors. *IAP AHA Textbook of Adolescent Medicine.* 1st ed. New Delhi: Jaypee Brothers Medical Publishers. 2024; 37-9.

**Cite this article as:** Kumari G, Rathoria E, Khan FA, Singh SK, Lahari R, Rathoria R, et al. Prevalence of stunting, thinness and anaemia among adolescents and their association with demographics and dietary habits. *Int J Contemp Pediatr* 2024;11:1711-8.