Original Research Article

DOI: https://dx.doi.org/10.18203/2349-3291.ijcp20233598

Association of early life factors with metabolic syndrome in school going adolescents of an urban south Indian population: a case control study

Kiran Araballi, Meenakshi B. Ramanna*, Roopa M. Bellad

Department of Paediatrics, KAHER's Jawaharlal Nehru Medical College, Belagavi, Karnataka, India

Received: 21 July 2023 Revised: 11 August 2023 Accepted: 18 October 2023

*Correspondence:

Dr. Meenakshi B. Ramanna, E-mail: meenakshi.br@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Multiple factors are attributed for the increase in the prevalence of metabolic syndrome (MS) in adolescents. Association of early life factors like birth weight with adolescent MS is not clearly understood. Objectives were to study the association of early life factors with adolescent MS between aged 10- 15 years of Belagavi city.

Methods: Study design: Case control Study. Study period: January 2018 to December 2018. Study population: Adolescents of age group, 10 to 15 years from the schools of Belagavi, 400 adolescents (186-cases and controls-214) were enrolled and who were having waist circumference ≥90th percentile for that age and gender were subjected to the laboratory investigations to diagnose MS. Data regarding early life factors like birth weight, gestational age and breast feeding was obtained by parental interview.

Results: Overall prevalence as per the international diabetes federation criteria was 11% and a significant difference in the prevalence between cases and controls (15.05% vs 7.48%) (p=0.0160) was observed. Positive association was observed between initiation, exclusivity, and total duration of breast feeding with MS (OD: 3.66, 2.01, 1), indicating no protection of these factors for development of MS. Birth weight had a positive association with MS (OD=7.26). **Conclusions:** The study showed no protective association between the initiation, exclusivity and the total duration of breastfeeding with MS. However, lower middle SES, family history of hypertension (HTN), central obesity, high BMI, high TG, and low HDL were significantly associated with increased risk of MS.

Keywords: MS, Early life factors, Adolescents

INTRODUCTION

Metabolic syndrome (MS) is defined by the presence of multiple risk factors including central obesity, raised blood pressure, abnormal lipid levels, and raised blood sugar levels. There is an increase in the prevalence of MS (MS) globally in children and adolescents especially in developing countries including India. MS in childhood can lead to early onset of diabetes mellitus (DM), HTN, cardiovascular diseases (CVD). Multiple risk factors are attributed for the development of MS, among them obesity is a major risk factor. Early life factors like birth weight, breastfeeding and infant feeding

practices are shown to be responsible for juvenile obesity with increased risk for development of MS.^{11,12}

Birth weight is an important indicator of development of adolescent MS, which suggests the intrauterine environment experienced by the fetus. A strong association is reported between birth weight (low birth weight or high birth weight) and MS in the literature. 11-19 Larger population-based studies from developing countries have found that birth weight was not a risk factor in the development of MS during adolescence. 11-19

The protective role of breast feeding for prevention of future onset of MS is studied extensively with

inconsistent results.²¹⁻²⁶ Hormones present in the breast milk like leptin and ghrelin regulate the appetite, growth, and weight to prevent obesity by affecting food intake and food preferences later in life.⁸ Some Studies have reported that breastfeeding leads to lower risk of development of obesity, HTN, diabetes.²⁻⁸ Many studies have observed that, the duration and exclusivity of breastfeeding in infancy have been inversely associated with future cardiometabolic risk.^{9,20} There is a considerable literature on the association between breastfeeding and the components of MS in children and adolescents, but very few to study the association between breastfeeding and MS as a whole.²¹⁻²⁶

It is crucial to identify this association to formulate strategies to prevent and plan interventions to minimize the risks for development of MS. Development of effective strategies and actions to control and prevent the prevalence of obesity-related chronic diseases is urgently needed in India. However there are no studies clearly defining association between MS and early life factors among children and adolescents in India. Therefore, the study was conducted with the objective to identify the association of early life factors with MS and it's prevalence in school going Indian adolescents'.

METHODS

Study population

The case control study was conducted between January 2018 to December 2018, among the adolescents of 10 to 15 years studying in the schools of Belagavi city, after obtaining the approval from the institutional ethical committee, 15 schools (List 1), were selected by stratification using the chit method. Prior to the conduct of the study, permission and consent was taken from the concerned authorities, teachers and parents. A total of 2050 adolescents were screened for MS per IDF definition.1 The students who fulfilled the inclusion criteria and whose parents consented for the study were enrolled. Parents were interviewed for the data regarding socio demographic and family characteristics, diet history, type and duration of physical activity including number of hours of media exposure, type of media exposure in the past week and early life factors like birth weight, gestational age, total duration of breast feeding, exclusive breast-feeding duration, time of initiation of breastfeeding, which was recorded in a pre-tested and pre-designed questionnaire. Following this all the participants underwent anthropometric assessment and physical examination.

Inclusion criteria

Adolescents included patients aged between 10-15 years studying in schools of Belagavi city, who consented to participate (student and parental consent), meeting the MS criteria as per IDF definition were included in study.

Exclusion criteria

Absentees on the day of enrollment and adolescents with no data regarding birth weight, breast feeding history etc. were excluded.

List 1: G-Government school, P-Private school, PA-Private aided.

Measurements

The anthropometry included weight for age, height for age, waist circumference, hip circumference, waist: hip ratio, BMI. The girls and boys were examined in separate rooms in the presence of a third person of the same gender. Weight was measured to the nearest of 0.1 kg on a balanced scale and was recorded on a mechanical weighing scale with an accuracy of ±50 gm. A metal column height-meter (200 cm long with 0.1 cm precision) was used for height measurement. The students stood barefooted with their hand beside straight and relaxed. The heels and buttock were in contact with the column and head in the Frankfurt plane. Waist circumference was measured by a non-stretchable tape at the midpoint between the bottom of the rib cage and above the top of the iliac crest during minimal respiration. The hip circumference was taken at the level of the anterior superior iliac spine. The hip circumference <113 cm in males and <104 cm in females was considered as normal.

The waist: Hip ratio calculated as waist circumference/hip circumference and values <0.84 was considered normal for females and <0.9 was considered normal for males. The BMI was calculated as the ratio of weight in kilogram to the square of height in meters and then standardized for sex and age using data from Agarwal et al growth chart for the Indian children and adolescents.

Blood pressure: Students were made to relax for 5 minutes in sitting position and after that BP cuff was tied on the right arm midway between the acromion process and olecranon (cuff should cover 40% of the circumference of the arm). BP was checked manually with calibrated mercury sphygmomanometer, first by palpatory method then auscultatory method, average of 3 readings were taken. Blood pressure $\geq 95^{\text{th}}$ percentile for that age and gender was included in the criteria for diagnosis of MS.

Laboratory tests: Adolescents with waist circumference ≥90th percentile for that age and gender, using Khadilkar et al waist circumference percentile charts for Indian children were subjected to the laboratory investigations namely fasting blood sugar (FBS), triglycerides and high-density lipoproteins (HDL) to diagnose MS.²⁷

Definitions

Cases: Adolescents with MS as per international diabetes foundation criteria abdominal obesity (defined as Waist

circumference $\geq 90^{th}$ percentile according to cut off points for South Asians (≥ 90 cm in boys or ≥ 80 cm in girls) and presence of two of the following parameters i.e., Blood pressure $\geq 130/85$ mmHg, fasting glucose ≥ 100 mg/dL, triglycerides ≥ 150 mg/dL and HDL-C < 40 mg/dL.

Controls: Age and gender matched adolescents. cook et al criteria were used to diagnose MS.²⁸

Birth weight

LBW and HBW were defined as birth weight <2500 g and ≥4000 g, respectively.

Breastfeeding

Initiation of breast feeding in minutes.: time since birth to first breastfeeding.

Exclusive breastfeeding duration in months: Exclusive breastfeeding" is defined as no other food or drink, not even water, except breast milk (including milk expressed or from a wet nurse) for 6 months of life, but allows the infant to receive ORS, drops and syrups (vitamins, minerals and medicines).

Total duration of breast feeding in months

Total duration, the baby has received the breast milk since birth to complete cessation of breast milk.

Statistical analysis

Was carried out by using the SPSS 20.0 software. The data was analyzed by chi square test of independence for association, the independent t test was applied to compare cases and controls with mean of numerical parameters. The multiple logistic regression was used to assess the association. Bivariate analysis of each variable was performed to know the association. The statistical significance was set at 5% level (p<0.05).

RESULTS

Out of the total 2050 adolescents screened, 400 (186-cases and controls-214) were enrolled and analyzed. Table 1 shows the sociodemographic and general characteristics of cases and controls. Majority of the study participants were in the age group of 12.78 and 13.09 (SD 1.42 and 1.47) (in cases and controls respectively) (p=0.0338), from lower-middle class

socioeconomic status and studying in the government schools. Family history of HTN was present significantly in cases compared to controls (P-0.1030). The physical activity of the adolescents in both the groups was for 30minutes /day, duration of sleep of 8hours and duration of media usage one hour per day. The overall prevalence of MS among the study population as per the IDF criteria was 11% (n=44). A statistically significant (p=0.0160) difference in the prevalence between cases 15.05% (n=28) and controls 7.48% (n=16) was observed.

It was observed that the cases had higher mean values for height, weight, waist circumference, hip circumference, BMI and also systolic and diastolic blood pressure, birth weight, initiation and total duration of breast feeding, (Table 2). However, no significant difference was observed in the mean values with regard to exclusive breast feeding, triglyceride levels and blood glucose levels.

Statistical significance was not noted between cases and controls with regard to the early life factors like birth weight, initiation, exclusive and total duration of breast feeding. Birth weight was more than 2.5 kg (p=0.6466), initiation of breast feeding was less than 30 mins (p=0.123), exclusive breast-feeding duration was between 3-6 months (p=0.900) in both cases and controls.

Bivariate analysis performed in adolescents with MS showed no significant difference between cases and controls with respect to birth weight, exclusive and total duration of breastfeeding. However, it was observed that MS was more prevalent in adolescents with birth weight more than 2,5 kg, prolonged exclusive breast-feeding duration for 7-12 months and total duration of breast feeding of 13-24 months.

Multiple regression analysis showed a significant positive association between the components of MS namely blood pressure, triglyceride levels and FBS and development of MS with odds ratio of 1, 31.69, 8.12 respectively (Table 3). This observation indicates that chance of developing MS increases with HTN, raised triglyceride and FBS levels A positive association observed between early life factors i.e., duration of exclusive and total duration of breast feeding, initiation of breast feeding, with MS with odds ratio of 3.66, 2.01, 1 respectively, indicating there was no protection with exclusive breastfeeding, breast feeding duration for development of MS. Birth weight also shows positive association with MS with odds ratio 7.26, which was statistically significant.

Table 1: Socio demographic and general characteristics of study participants.

Variables	Cases, n (%)	Controls, n (%)	P value
Socio demographic profile			
Age (In years) (mean)	12.78±1.4	13.09±1.47	0.0030
Gender-male	118 (63.44)	102 (47.66)	0.0020
Lower middle-class SES (Modified B. G. Prasad classification)	13 (46.43)	8 (50)	0.0700
Government school	127 (68.28)	135 (63.08)	0.0001

Continued.

Variables	Cases, n (%)	Controls, n (%)	P value
Parents primary education			
Father's education	78 (42.47)	102 (47.66)	0.0010
Mother's education	101 (54.30)	99 (46.26)	0.0010
Family history			
HTN	24 (12.90)	17 (7.94)	0.1030
Diabetes	11 (5.91)	15 (7.01)	0.1030

Table 2: Variables of study participants.

Variables	Cases		Controls	Controls		D 1
	Mean	SD	Mean	SD	T value	P value
Anthropometry						
Height (cm)	147.81	7.74	146.00	8.74	-2.1847	0.0295*
Weight (Kg)	46.07	11.20	39.26	7.64	-7.1764	0.0001*
Waist circumference (cm)	84.30	6.73	60.61	12.98	-22.4125	0.0001*
Hip circumference (cm)	84.16	13.94	63.81	16.98	-12.9773	0.0001*
Waist: Hip ratio	0.88	0.05	0.88	0.05	0.5509	0.5820
BMI (Kg/m ²)	20.50	3.26	18.06	2.35	-8.6579	0.0001*
Components of MS						
Waist circumference (cm)	84.30	6.73	60.61	12.98	-22.4125	0.0001*
Systolic (mmHg)	108.62	11.15	105.89	7.42	-2.9207	0.0037*
Diastolic (mmHg)	68.28	6.02	66.56	6.60	-2.7069	0.0071*
TG (mg/dl)	117.91	43.66	111.38	26.93	-1.8248	0.0688
HDL (mg/dl)	46.74	7.18	48.49	6.24	2.6150	0.0093
Blood glucose (mg/dl)	90.25	11.72	89.35	11.01	-0.7927	0.4284
Early life factors						
Birth weight (kg)	2.68	0.31	2.61	0.27	-2.0828	0.0379*
Inter. between birth to breast milk (mins)	42.58	28.70	53.27	36.58	3.2168	0.0014*
Exclusive breast-feeding duration (months)	6.30	1.21	6.14	1.09	-1.3586	0.1751
Total duration of breast feeding (months)	21.94	5.68	20.54	6.35	-2.3083	0.0215*
*p<0.05.						

Table 3: Multiple logistic regression analysis of status of MS by different variables.

Independent variables	Odds	Std.	7 volue	P value	95% CI for OR	
	ratio	errs.	Z value	P value	Lower	Upper
Exclusive breast-feeding duration (months)	3.66	3.60	1.3200	0.1860	0.53	25.08
Total duration of breast feeding (months)	2.01	1.62	0.8600	0.3880	0.41	9.77
Inter between birth to breast milk (mins)	1.00	0.01	-0.3400	0.7320	0.97	1.02
Birth weight (kg)	7.26	8.01	1.9000	0.0500*	0.83	63.16
SBP (Centile)	1.02	0.03	0.7900	0.4270	0.96	1.09
DBP (Centile)	1.12	0.05	2.4500	0.0140*	1.02	1.22
TG (mg/dl)	31.69	25.02	4.3800	0.0001*	6.75	148.90
HDL (mg/dl)	96.08	129.21	3.3900	0.0010*	6.89	1340.67
Blood glucose (mg/dl)	8.12	6.73	2.5200	0.0120*	1.60	41.26
BMI (Kg/m²)	1.07	0.10	0.7800	0.4380	0.90	1.28
Waist circumference (cm)	1.01	0.03	0.1800	0.8590	0.95	1.07

DISCUSSION

Multiple factors in early life predispose to the development of MS during adolescence. The rising prevalence of both the individual components of MS as well as complete MS indicates a need to identify these risk factors to plan the preventive strategies for at-risk populations.^{29,30} The present case control study conducted among school going adolescents between 10-15 years to

identify the association between early life factors and MS found no protective association.

Our study observed no protective association between MS and initiation, exclusivity and total duration of breastfeeding. Observational cross sectional studies from low and middle income countries conducted among obese adolescents, have reported similar observations.^{21,24} A larger population based cross sectional study among 5258

Iranian adolescents, have also shown no evidence that longer duration of breastfeeding duration was protective against cardiovascular disease risk factors and also found no association between dose response relationship.²² In contrast other studies did find a correlation between breast feeding duration and a reduced incidence of MS in later life. Cross sectional studies from China conducted among school going children between 7-17 years, have shown that breastfeeding longer than 6 months duration was inversely associated with development of MS indicating breastfeeding may reduce the risk of MS.3,20 Similar inverse association is reported in a larger crosssectional study among children and adolescents from Spain.¹³ A Serbian case control study among obese adolescents between 10-16 years breast feeding was more prevalent in obese children than children with MS, indicating that lack of breastfeeding is a risk factor for development of MS.25 Majority of the studies in a systematic review conducted by Lauren Wisnieski et.al to find the evidence for the association between breastfeeding and development of MS showed a significant association.²⁶ Majority of these studies showing a protective association are observational cross sectional, retrospective studies conducted among obese adolescents. However, our study compared obese vs non obese children, screened from the schools of the community using IDF criteria, indicating stronger study design.

Birth weight reflects the pattern of intrauterine growth which involves a complex interaction between parental genes and intrauterine environment. The association of birth weight and development of MS has been studied by many investigators with conflicting results .Multiple logistic analysis in our study showed that Birth weight has a significant positive association with MS (odds ratio 7.26), indicating that babies with birth weight of more than 2.5 kg were at risk of development of MS. Studies have shown that both lower birth weight and large for gestational age babies were at increased risk for having MS in adulthood. 11-19 CASPIAN study including 4811 Iranian students 6-18 years of age showed that a birth weight over 4000 gm in boys and less than 2500 gm in girls increased the risk of having MS. 23

The overall prevalence of MS in our study was 11% with a higher prevalence in adolescents with increased (cases)as against non-obese abdominal obesity adolescents (7.48%:controls). Studies from other Asian countries have shown a higher prevalence similar to our observations.^{29,30} In contrast ,many Indian studies have reported a lower prevalence of 1.5%-9.9%.²⁻⁹ In a crosssectional study from North India, the prevalence of MS using IDF criteria among urban adolescents was 3% and from Shimla had a prevalence of 3.3%. 5,10 Other Indian cross- sectional studies using ATP III criteria have shown a prevalence of 3.8% to 4.2%. 4,6 Higher prevalence of MS in our study when compared to the other Indian studies could be because of the difference in the definition, different study setting, and population .We

also observed increase in the prevalence of MS among non-obese adolescents in the control group. Literature shows evidence of obese individuals need not be always at risk to develop MS and also reports, 40% of the normal adults of normal weight having metabolic abnormalities that are typically associated with obesity. The components of MS BMI and waist circumference, SBP, DBP were associated significantly with development of MS in the study, which are similar to other Indian studies.^{6,8}

First Indian population-based case control study among adolescents to find association between early life factors and MS with adequate sample size, by using a universally accepted age-related criterion to define MS and interpreting the anthropometric measurements using the chart specific to the Indian population. This study also adds to the existing data on prevalence of MS in normal adolescents. However, data being collected from the parents retrospectively may recall bias while collecting the data and may be the limitation of the study.

CONCLUSION

In conclusion, the present study showed no protective association between the initiation, exclusivity, the total duration of breastfeeding and MS. However, Birth weight shows positive association with MS and increase in the prevalence of MS among the study population. Our study also adds to the current knowledge that obesity per se does not imply presence of MS in the individual. Small proportion of lean individuals also harbor the changes suggestive of MS. A larger population based prospective cohort study is recommended to establish the association between early life factors and MS.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

REFERENCES

- International Diabetes Federation. 2016. Criteria of metabolic syndrome in children and adolescents. Available at: http://www.idf.org/metabolic-syndrome/children/criteria. Accessed on 25 June, 2023
- Agudelo GM, Bedoya GE, Alejandro E, Fredy AP, Angelica MM, Claudia MV. Variations in the prevalence of metabolic syndrome in adolescents according to different criteria used for diagnosis: which definition should be chosen for this age group? Metab Syndr Relat Disord. 2014;12(4):202-9.
- 3. Singh R, Bhansali A, Sialy R, Aggarwal A. Prevalence of metabolic syndrome in adolescents from a North Indian population. Diabetes Med. 2007;24:195-9.
- 4. Tandon N, Garg MK, Singh Y, Marwaha RK. Prevalence of metabolic syndrome among urban

- Indian adolescents and its relation with insulin resistance (HOMA-IR). J Pediatric Endocrinol Metab. 2013;26:1123-30.
- Bhalavi V, Deshmukh PR, Goswami K, Garg N. Prevalence and correlates of metabolic syndrome in the adolescents of rural Wardha. Indian J Community Med. 2015;40:43-8.
- 6. Bhat R, Paray I, Zargar S, Ganie A, Khan I. Prevalence of the metabolic syndrome among North Indian adolescents using Adult Treatment Panel III and pediatric International Diabetic Federation definitions. Arch Med Health Sci. 2015;3:44.
- Andrabi SM, Bhat MH, Andrabi SR, Kamili MM, Imran A, Nisar I et al. Prevalence of metabolic syndrome in 8-18-year-old school-going children of Srinagar city of Kashmir India. Indian J Endocrinol Metab. 2013;17:95-100.
- 8. Singh N, Parihar RK, Saini G, Mohan SK, Sharma N, Razaq M et al. Prevalence of metabolic syndrome in adolescents aged 10-18 years in Jammu, J and K. Indian J Endocrinol Metab. 2013;17:133-7.
- 9. Jiao W, Yanna Z, Li C, Jin J, Yajun C, Jincheng M et al Metabolic syndrome and its associated early life factors: a cross sectional study. Public Heal Nutr. 2015;19(7):1147-54.
- Anmol G, Amit S, Narender M, Aakriti G, Neha S, Ravindra MP et.al. Prevalence of Pediatric Metabolic Syndrome and Associated Risk Factors among School-Age Children of 10-16 Years Living in District Shimla, Himachal Pradesh, India. Indian J Endocrinol Metab. 2018;22(3):373-8.
- 11. Efstathiou SP, Skeva II, Irini IS, Zorbala E, Mountokalakis TD. Metabolic Syndrome in Adolescence Can It Be Predicted From Natal and Parental Profile? The Prediction of Metabolic Syndrome in Adolescence (PREMA) Study. Circulation. 2012;125(7):902-10.
- 12. Kim K, Estela B, Raquel B, Marcela R, Marcela C, Betsy L et al. Adolescent Metabolic Syndrome Risk Is Increased with Higher infancy gain and decreased with longer breast-feeding. Int J Pediatr. 2012;2012:478610.
- 13. González-Jiménez E, Montero-Alonso MA, Schmidt-Rio Valle J, García-García CJ, Padez C. Metabolic syndrome in Spanish adolescents and its association with birth weight, breastfeeding duration, maternal smoking, and maternal obesity: A cross-sectional study. Eur J Nutrit. 2015;54(4):589-97.
- 14. Hirschler V, Roque MI, Calcagno ML, Gonzalez C, Aranda C. Maternal waist circumference and the prediction of children's metabolic syn- drome. Arch Pediatr Adolescent Med. 2007;161(12):1205-10.
- Santiago AC, Cunha LP, Vieira NS, Moreira LM, Oliveira PR, Lyra PP et al. Breastfeeding in children born small for gestational age and future nutritional and metabolic outcomes: a systematic review. J Pediatr. 2019;95(3):264-74.
- 16. Burke V, Beilin LJ, Simmer K, Oddy WH, Blake KV, Doherty D et al. BMI and cardiovascular risk factors in children. Int J Obesity. 2005;29(1):15-23.

- 17. Jiao W, Javier SP, Jacqueline SRV, Yajun C, Jin J, Emilio GJ. Metabolic Syndrome and Its Associated Early-Life Factors among Chinese and Spanish Adolescents: A Pilot Study. Nutrients. 2019;11(7):1568.
- Pacheco LS, Blanco E, Burrows R, Reyes M, Lozoff B, Gahagan S. Early Onset Obesity and Risk of Metabolic Syndrome Among Chilean Adolescents. Prev Chronic Dis. 2017;14:E93.
- 19. Zhenyu Y, Sandra LH. Nutrition in pregnancy and early childhood and associations with obesity in developing countries. Maternal Child Nutr. 2013;9(1)105-19.
- Wang S, Liu Y, Zhan J, Liu X, Feng Q, Gong J, He Q. Determinants of metabolic syndrome in Chinese schoolchildren. Asia-Pacific J Publ Health. 2015;27(2):NP674-80.
- 21. Sen Y, Kandemir N, Alikasifoglu A, Gonc N, Ozon A. Prevalence and risk factors of metabolic syndrome in obese children and adolescents: The role of the severity of obesity. Eur J Pediatr. 2008;167(10):1183-9.
- 22. Martin RM, Patel R, Kramer MS, Vilchuck K, Bogdanovich N, Sergelchick N et al. Effects of promoting longer term and exclusive breastfeeding on cardiometabolic risk factors at age 11.5 years: A cluster-randomized, controlled trial. Circulation. 2016;129(3):321-9.
- Izadi V, Kelishadi R, Qorbani M, Esmaeil M, Taslimi M, Heshmat R et al. Duration of breastfeeding and cardiovascular risk factors among Iranian children and adolescents: The CASPIAN III study. Nutrition. 2013;29(5):744-51.
- 24. Jamoussi H, Mahjoub F, Sallemi H, Berriche O, Ounaissa K, Amrouche C et al. Metabolic syndrome in Tunisian obese children and adolescents. La Tunisie Méd, 2012;90(1):36-40.
- 25. Folic N, Folic M, Markovic S, Marija A, Jankovic S. Risk factors for the development of metabolic syndrome in obese children and adolescents. Serbian Arch Med. 2015;143(2-3):146-52.
- Lauren W, Jean K, Claudia H, David T, Claire MZ. Breastfeeding and Risk of Metabolic Syndrome in Children and Adolescents: A Systematic Review. J Hum Lact. 2018;34(3):515-25.
- Khadilkar A, Ekbote V, Chiplonkar S, Khadilkar V, Kajale N, Kulkarni S et al. Waist circumference percentiles in 2-18-year-old Indian children. J Pediatr. 2014;164(6):1358-62.
- 28. Cook S, Weitzman M, Auinger P, Nguyen M, Dietz Wh. Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch Pediatr Adolescent Med. 2003;157(8):821-7.
- 29. Rodríguez-Moran M, Salazar-Vazquez B, Violante R, Guerrero-Romero F. Metabolic syndrome among children and adolescents aged 10-18 years. Diabetes Care. 2004;27(10):2516-7.
- 30. Kim HM, Park J, Kim HOS, Kim DH. Prevalence of

the metabolic syndrome in Korean adolescents aged 12-19 years from the Korean National Health and Nutrition Examination Survey 1998 and 2005. Diabetes Res Clin Pract. 2007;75(1):111-4.

Cite this article as: Araballi K, Ramanna MB, Bellad RM. Association of early life factors with metabolic syndrome in school going adolescents of an urban south Indian population: a case control study. Int J Contemp Pediatr 2023;10:1789-95.