# **Case Report**

DOI: 10.5455/2349-3291.ijcp20150518

# Thyroxine replacement promptly corrects vaginal bleeding in precocious menarche due to Van Wyk Grumbach syndrome

Sapna Vinit Amin, Sunanda Bharatnur, Akhila Vasudeva, Shripad S. Hebbar\*

Department of Obstetrics and Gynaecology, Kasturba Medical College, Manipal, Manipal University, Karnataka, India

**Received:** 01 February 2015 **Revised:** 10 February 2015 **Accepted:** 21 March 2015

\*Correspondence: Dr. Shripad S. Hebbar,

E-mail: drshripadhebbar@yahoo.co.in

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

# **ABSTRACT**

Van Wyk Grumbach syndrome is a rare complication of a common endocrine disorder, i.e., hypothyroidism, but occurs when it is long standing during periods of pre-pubertal growth. It can occur in both sexes, in boys it is associated with testicular enlargement and in girls, the usual presenting features are early onset menarche, enlarged bilateral multicystic ovaries and delayed skeletal growth. Diagnosing this condition is very important as unnecessary surgical intervention for ovarian enlargement is avoided. Prompt replacement therapy with thyroxine not only corrects menstrual abnormality, but also ovaries return to normal over period of time. In this case report, we describe an unusual case of irregular vaginal bleeding, large multicystic ovaries and delayed bone age in a young girl due to autoimmune thyroiditis who promptly responded to levo-thyroxine.

Keywords: Van Wyk Grumbach syndrome, Precocious puberty, Delayed bone age, Multicystic ovaries

# INTRODUCTION

Delayed pubertal development is commonly seen children with hypothyroidism. But, occasionally when hypothyroidism is left unattended for long duration, the result may be precocious puberty. 1,2 Van Wyk and Grumbach in 1960 described Van Wyk Grumbach Syndrome (VWGS) as the constellation of symptoms including hypothyroidism, precocious puberty, and delayed bone age which regresses with thyroxine replacement.<sup>3</sup> One of the explanation is that the high levels of Thyroid Stimulating Hormone (TSH) seen in long standing hypothyroidism stimulates release of gonadotrophins mainly pituitary the Follicular Stimulating Hormone (FSH), which in turn causes accelerated ovarian steroidogenesis.<sup>4</sup> It is well known that both TSH and FSH share α subunits and this can cause hormonal overlap at the level of G-protein coupled receptors.<sup>5</sup> As a consequence, serum oestrogen levels are

increased and the affected girl may show precocious thelarche and menarche. As adrenal function is normal, pubic and axillary hair development does not occur simultaneously. Some girls may present with premenarcheal ovarian cysts.<sup>6</sup>

## **CASE REPORT**

A ten year old girl presented with complaints of irregular bleeding per vaginum since 2 years, and minimal breast development from 8 years of age. Her menstrual cycles were irregular with 4-5 days of bleeding once in 1-5 months and minimal flow. She was on tranexamic acid during bleeding episodes as advised her family doctor. She had chicken pox 1 month ago. Her mother had attained menarche at 14 years.

On examination her BMI was 16.2 kg/m<sup>2</sup>. She was pale, breast development was Tanner stage 2, pubic and

axillary hair development corresponded to Tanner stage 1. Thyroid was clinically normal, vital signs were stable, cardiovascular and respiratory systems were unremarkable. Abdomen was soft, non-tender, no mass or organomegaly. External genitalia were healthy, pubic hairs were absent and minimal bleeding per vaginum noted.

Transabdominal ultrasound done showed uterine dimensions of  $6.3 \times 2.7 \times 1.7 \text{ cm}$  and 8 mm thick endometrium. Right ovary measured  $4x \times 3 \text{ cm}$  with a clear 3 cm follicular and left ovary measured  $4.5 \times 3 \text{ cm}$  with a clear cyst of 3 cm and multiple small follicles. Fluid collection of  $4.8 \times 2.8 \text{ cm}$  noted in the vagina and lower part of cervix.

Lab parameters showed hemoglobin of 9.5 gm%, rest of complete blood counts and coagulation panel were normal. TSH was >100 mIU/ml,  $T_3$  - 0.51 ng/ml,  $T_4$  - 0.89 mcg/ml, anti-TPO and anti-TG antibodies done were high. FSH and LH were 5.4 & 0.1 mIU/ml respectively, prolactin levels corresponded to 42 ng/ml, calcium and vitamin D, PTH were within normal limits. Tumor markers for ovarian malignancy were normal.



Figure 1: X-ray of left hand for bone age determination.

Her bone age was determined by taking X-ray (Figure 1) of left wrist (including entire palm and distal radius and ulna) and employing Tanner-Whitehouse method which is gender specific.<sup>7</sup> Traditionally the bone age is determined by Greulich-Pyle method where in the radiographs of the whole hand and wrist are compared with images in the atlas.<sup>8</sup> The 20 different bones around

the wrist joints were analysed and graded into 8 maturity stages (B, C, D, E, F, G, H & I, in some bones 7 stages). Then they were scored according to Tanner-Whitehouse maturity score for girls (Table 1).

The maturity of bones were assessed depending upon the size, shape, density, smoothness or thickening of the borders, thickness of epiphyseal line, extent of fusion and capping of epiphyseal regions.

Table 1: Twenty bone Tanner-Whitehouse maturity score for girls.

| Bones          | Mai | turity | scale | & scores |    |                |    |     |  |  |
|----------------|-----|--------|-------|----------|----|----------------|----|-----|--|--|
| assessed       | В   | C      | D     | E        |    |                | Н  | I   |  |  |
| Radius         | 17  | 19     | 25    | 33       | 54 | <b>G</b><br>85 | 99 | 106 |  |  |
| Ulna           | 22  | 26     | 30    | 39       | 60 | 73             | 80 | X   |  |  |
| First          | 22  | 20     | 30    | 39       | 00 | 13             | 80 | Λ   |  |  |
| metacarpal     | 5   | 6      | 11    | 18       | 24 | 29             | 31 | 33  |  |  |
| Third          |     |        |       |          |    |                |    |     |  |  |
| metacarpal     | 3   | 5      | 7     | 11       | 17 | 23             | 24 | 26  |  |  |
| Fifth          |     |        |       |          |    |                |    |     |  |  |
| metacarpal     | 3   | 4      | 7     | 12       | 18 | 22             | 24 | 25  |  |  |
| Proximal       |     |        |       |          |    |                |    |     |  |  |
| phalanx of the | 5   | 5      | 8     | 14       | 24 | 29             | 30 | 32  |  |  |
| thumb          | Ü   | Ü      | Ü     |          |    |                |    | -   |  |  |
| Proximal       |     |        |       |          |    |                |    |     |  |  |
| phalanx of the | 4   | 4      | 7     | 13       | 20 | 24             | 25 | 26  |  |  |
| third finger   |     |        |       |          |    |                |    |     |  |  |
| Proximal       |     |        |       |          |    |                |    |     |  |  |
| phalanx of the | 4   | 4      | 7     | 13       | 19 | 23             | 24 | 25  |  |  |
| fifth finger   |     |        |       |          |    |                |    |     |  |  |
| Middle         |     |        |       |          |    |                |    |     |  |  |
| phalanx of the | 4   | 4      | 7     | 13       | 20 | 23             | 24 | 25  |  |  |
| third finger   |     |        |       |          |    |                |    |     |  |  |
| Middle         |     |        |       |          |    |                |    |     |  |  |
| phalanx of the | 4   | 5      | 8     | 14       | 20 | 22             | 22 | 23  |  |  |
| fifth finger   |     |        |       |          |    |                |    |     |  |  |
| Distal phalanx | 5   | 5      | 8     | 15       | 24 | 31             | 32 | 34  |  |  |
| of the thumb   |     |        |       | 10       |    | <u> </u>       |    | J 1 |  |  |
| Distal phalanx | _   |        |       |          |    |                |    |     |  |  |
| of the third   | 3   | 4      | 6     | 10       | 17 | 22             | 23 | 24  |  |  |
| finger         |     |        |       |          |    |                |    |     |  |  |
| Distal phalanx | 2   | 4      | 7     | 1.1      | 17 | 21             | 22 | 22  |  |  |
| of the fifth   | 3   | 4      | 7     | 11       | 17 | 21             | 22 | 23  |  |  |
| finger         |     |        |       |          |    |                | 11 |     |  |  |
| Capitate       | 53  | 56     | 61    | 67       | 76 | 85             | 3  | X   |  |  |
| Hamate         | 44  | 47     | 53    | 64       | 74 | 85             | 97 | 109 |  |  |
| Triquetral     | 8   | 12     | 19    | 28       | 36 | 46             | 63 | X   |  |  |
| Lunate         | 10  | 14     | 20    | 27       | 35 | 46             | 60 | X   |  |  |
| Scaphoid       | 13  | 17     | 23    | 29       | 36 | 44             | 57 | X   |  |  |
| Trapezium      | 12  | 14     | 20    | 25       | 32 | 39             | 49 | 59  |  |  |
|                | 13  |        | 20    | 24       | 31 | 40             | 57 | X   |  |  |
| Trapezoid      | 13  | 16     | 20    | 24       | 31 | 40             | 31 | Λ   |  |  |

The total score in our study was 565 and was equivalent bone age of 7.9 years (calculated from Table 2), which was delayed by 2 years.

| Tanner-Whitehouse girls bone age (GBA) for given maturity score (MS) |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|----------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| MS                                                                   | 131  | 136  | 140  | 146  | 152  | 159  | 163  | 172  | 179  | 186  | 192  | 199  | 206  | 213  | 220  | 226  |
| GBA                                                                  | 1    | 1.1  | 1.2  | 1.3  | 1.4  | 1.5  | 1.6  | 1.7  | 1.8  | 1.9  | 2    | 2.1  | 2.2  | 2.3  | 2.4  | 2.5  |
| MS                                                                   | 233  | 240  | 247  | 253  | 260  | 267  | 274  | 281  | 287  | 293  | 299  | 303  | 311  | 317  | 324  | 331  |
| GBA                                                                  | 2.6  | 2.7  | 2.8  | 2.9  | 3    | 3.1  | 3.2  | 3.3  | 3.4  | 3.5  | 3.6  | 3.7  | 3.8  | 3.9  | 4    | 4.1  |
| MS                                                                   | 338  | 345  | 351  | 357  | 363  | 370  | 376  | 382  | 389  | 395  | 402  | 408  | 414  | 420  | 426  | 432  |
| GBA                                                                  | 4.2  | 4.3  | 4.4  | 4.5  | 4.6  | 4.7  | 4.8  | 4.9  | 5    | 5.1  | 5.2  | 5.3  | 5.4  | 5.5  | 5.6  | 5.7  |
| MS                                                                   | 438  | 444  | 450  | 456  | 462  | 468  | 474  | 480  | 485  | 491  | 497  | 503  | 510  | 516  | 522  | 529  |
| GBA                                                                  | 5.8  | 5.9  | 6    | 6.1  | 6.2  | 6.3  | 6.4  | 6.5  | 6.6  | 6.7  | 6.8  | 6.9  | 7    | 7.1  | 7.2  | 7.3  |
| MS                                                                   | 535  | 541  | 547  | 553  | 559  | 565  | 571  | 578  | 585  | 592  | 600  | 608  | 617  | 625  | 634  | 643  |
| GBA                                                                  | 7.4  | 7.5  | 7.6  | 7.7  | 7.8  | 7.9  | 8    | 8.1  | 8.2  | 8.3  | 8.4  | 8.5  | 8.6  | 8.7  | 8.8  | 8.9  |
| MS                                                                   | 653  | 662  | 670  | 680  | 690  | 700  | 710  | 721  | 731  | 742  | 752  | 762  | 772  | 783  | 794  | 803  |
| GBA                                                                  | 9    | 9.1  | 9.2  | 9.3  | 9.4  | 9.5  | 9.6  | 9.7  | 9.8  | 9.9  | 10   | 10.1 | 10.2 | 10.3 | 10.4 | 10.5 |
| MS                                                                   | 812  | 821  | 830  | 838  | 845  | 852  | 859  | 866  | 872  | 879  | 885  | 891  | 898  | 903  | 908  | 913  |
| GBA                                                                  | 10.6 | 10.7 | 10.8 | 10.9 | 11   | 11.1 | 11.2 | 11.3 | 11.4 | 11.5 | 11.6 | 11.7 | 11.8 | 11.9 | 12   | 12.1 |
| MS                                                                   | 918  | 923  | 928  | 932  | 937  | 940  | 944  | 948  | 953  | 956  | 960  | 963  | 966  | 969  | 972  | 974  |
| GBA                                                                  | 12.2 | 12.3 | 12.4 | 12.5 | 12.6 | 12.7 | 12.8 | 12.9 | 13   | 13.1 | 13.2 | 13.3 | 13.4 | 13.5 | 13.6 | 13.7 |
| MS                                                                   | 976  | 979  | 981  | 982  | 984  | 986  | 987  | 989  | 990  | 991  | 993  | 994  | 995  | 995  | 996  | 996  |
| GBA                                                                  | 13.8 | 13.9 | 14   | 14.1 | 14.2 | 14.3 | 14.4 | 14.5 | 14.6 | 14.7 | 14.8 | 14.9 | 15   | 15.1 | 15.2 | 15.3 |
| MS                                                                   | 997  | 997  | 998  | 998  | 999  | 999  | 103  |      |      |      |      |      |      |      |      |      |
| GBA                                                                  | 15.4 | 15.5 | 15.6 | 15.7 | 15.8 | 15.9 | 16   |      |      |      |      |      |      |      |      |      |

Table 2: Tanner-Whitehouse girls bone age (GBA) for given maturity score (MS).

In view of very high TSH levels, she was diagnosed as precocious puberty secondary to autoimmune Hashimotos thyroiditis and hence was started on tab. eltroxin 100 mcg OD. Follow up with thyroid function tests reports after one month were within normal limits and repeat transabdominal scan showed thin endometrium with no evidence of cysts in the ovaries and collection in vagina was regressed and patient did not have further episodes of bleeding per vagina since treatment. There was increment in the height by 5 cm. She was advised to continue eltroxin 100 mcg OD and regular follow up with pediatrician as well as with us.

#### DISCUSSION

Van Wyk Grumbach Syndrome (VWGS) consists of hypothyroidism, precocious puberty, and delayed bone age. The pathogenesis of precocious puberty or ovarian cyst is increased aromatization of androstenedione to oestrone, increased ovarian sensitivity to gonadotropins, increased sensitivity of mammotropes and gonadotropes to TSH. High levels of TSH acts via the FSH receptor causing gonadal stimulation resulting in increased oestradiol production, which stimulates the development of secondary sexual characters. Adrenal hormonogenesis is not increased; therefore pubic and axillary hairs are usually absent or sparse. Pituitary adenoma may develop in some cases due to long standing thyrotroph hyperplasia in response to the decreased thyroid hormone. 10,11 Hyperprolactinemia develops either due to thyrotrophic hyperplasia in the pituitary compressing the pituitary stalk, thereby disrupting hypothalamic inhibition of prolactin or due to direct stimulation of prolactin release by TRH. Patients may be asymptomatic or can present with headache, visual disturbances and galactorrhoea. With thyroxine replacement TSH secreting cells reduce in number relieving compression, prolactin concentrations decreases.

In another case report, a 7 year old girl presented with abdominopelvic mass and vaginal bleeding. Goiter and secondary sexual characters were noted on clinical examination. Based on clinical profile and investigations she was diagnosed with juvenile primary hypothyroidism due to autoimmune thyroiditis. Ovarian cysts and precocious puberty resolved spontaneously after thyroxine replacement.

VWGS in a 4.3 year old female patient with Down syndrome presented with hematuria on and off for 3 months. Physical examination revealed typical morphologic features of Down syndrome and hypothyroidism. Pubertal development stages were: breast- stage III and pubic hair - stage I. Serum estradiol level was high (117.7 pg/ml). Bilateral multiloculated ovarian cysts were noted on transabdominal ultrasonography. TSH was > 500 mIU/ml and FT<sub>4</sub>, FT<sub>3</sub> levels were as low as 0.4 ng/dl (0.7-1.48) and 1.0 pg/ml (1.71-3.71), respectively. With L-thyroxine - 100 mcg/day was started. Breast regressed and bleeding stopped after one month.

Children with Down syndrome have an increased risk for primary hypothyroidism; however, VWGS is not frequent

in them. In younger children, differentiation between macroscopic hematuria and vaginal bleeding may be difficult, and the diagnosis of precocious puberty may be delayed VWGS should be considered by the physicians in children with blood on their diaper; therefore, pubertal examinations must be performed carefully for all age groups. The cystic ovarian enlargement can be misinterpreted as a hormonally active ovarian neoplasm causing precocious puberty. It is imperative to recognize the clinical and imaging features of VWGS, including the relationship between juvenile hypothyroidism and cystic ovarian enlargement, to avoid unnecessary surgery. <sup>14</sup> The rare presentations of VWGS include microcytic anaemia, elevated Erythrocyte Sedimentation Rate (ESR), dermatological manifestations such as hyperpigmented skin lesion on chest wall and axilla and parathyroid hormone suppression despite vitamin D deficiency. 15 CA-125, LDH, AFP, Inhibin were also elevated in few reported cases. 16 All of the tumor markers, including inhibin, returned to normal values after treatment of hypothyroidism.<sup>17</sup>

Urinary and vaginal bleeding in young children must be clearly differentiated, and hypothyroidism must be investigated in children who have precocious puberty to avoid inappropriate surgical treatment in these young girls.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

institutional regulatory board

## **REFERENCES**

- Lafranchi S. Disorders of thyroid gland. In: Kliegman MR, Stanton BMD, Geme JS, Schor NF, Behrman RE, eds. Nelson Text Book of Pediatrics. 19th ed. Philadelphia, PA: Saunders; 2011: 1894-1918.
- 2. Piziak VK, Hahn HB. Isolated menarche in juvenile hypothyroidism. Clin Pediatr (Phila). 1984;23(3):177-9.
- 3. Van Wyk JJ, Grumbach MM. Syndrome of precocious menstruation and galactorrhoea in juvenile hypothyroidism: an example of hormonal overlap in pituitary feedback. J Pediatr. 1960;57:416-35.
- Ryan GL, Feng X, d'Alva CB, Zhang M, Van Voorhis BJ, Pinto EM, et al. Evaluating the roles of follicle-stimulating hormone receptor polymorphisms in gonadal hyperstimulation primary associated with severe juvenile hypothyroidism. J Clin Endocrinol Metab. 2007;92(6):2312-7.
- 5. Kroeze WK, Sheffler DJ, Roth BL. G-protein-coupled receptors at a glance. J Cell Sci. 2003;116:4867-9.

- 6. Indumathi CK, Bantwal G, Patil M. Primary hypothyroidism with precocious puberty and bilateral cystic ovaries. Indian J Pediatr. 2007;74(8):781-3.
- Tanner JM, Whitehouse RH, Cameron N, Marshall WA, Healy MJR, Goldstein H. Assessment of skeletal maturity and prediction of adult height. In: Tanner JM, Whitehouse RH, Cameron N, Marshall WA, Healy MJR, Goldstein H, eds. A Book. 2nd ed. London: Academic Press; 1983.
- 8. Milner GR, Levick RK, Kay R. Assessment of bone age: a comparison of the Greulich and Pyle and the Tanner and Whitehouse methods. Clin Radiol. 1986;37:119-21.
- 9. Rastogi A, Bhadada SK, Bhansali A. An unusual presentation of a usual disorder: Van Wyk-Grumbach syndrome. Indian J Endocrinol Metab. 2011;15(Suppl 2):S141-3.
- 10. Anjana Hulse. Van Wyk-Grumbach syndrome and pituitary hyperplasia in a six-year-old girl. Apollo Med. 2014;11(1):40-2.
- 11. Khawaja NM, Taher BM, Barham ME, Naser AA, Hadidy AM, Ahmad AT, et al. Pituitary enlargement in patients with primary hypothyroidism. Endocr Pract. 2006;12(1):29-34.
- 12. Campaner AB, Scapinelli A, Machado RO, Dos Santos RE, Beznos GW, Aoki T. Primary hypothyroidism presenting as ovarian tumor and precocious puberty in a prepubertal girl. Gynecol Endocrinol. 2006;22(7):395-8.
- 13. Ozgen T, Güven A, Aydin M. Precocious puberty in a girl with Down syndrome due to primary hypothyroidism. Turk J Pediatr. 2009;51(4):381-3.
- 14. Browne LP, Boswell HB, Crotty EJ, O'Hara SM, Birkemeier KL, Guillerman RP. Van Wyk and Grumbach syndrome revisited: imaging and clinical findings in pre- and post-pubertal girls. Pediatr Radiol. 2008;38(5):538-42.
- 15. Baranowski E, Högler W. An unusual presentation of acquired hypothyroidism: the Van Wyk-Grumbach syndrome. Eur J Endocrinol. 2012;166(3):537-42.
- 16. Durbin KL, Diaz-Montes T, Loveless MB. Van wyk and Grumbach syndrome: an unusual case and review of the literature. J Pediatr Adolesc Gynecol. 2011;24(4):e93-6.
- 17. Tran S, Kim EE, Chin AC. Severe menorrhagia, unilateral ovarian mass, elevated inhibin levels, and severe hypothyroidism: an unusual presentation of Van Wyk and Grumbach syndrome. J Pediatr Surg. 2013;48(1):e51-4.

DOI: 10.5455/2349-3291.ijcp20150518 Cite this article as: Amin SV, Bharatnur S, Vasudeva A, Hebbar SS. Thyroxine replacement promptly corrects vaginal bleeding in precocious menarche due to Van Wyk Grumbach syndrome. Int J Contemp Pediatr 2015;2:151-4.