

Original Research Article

DOI: <https://dx.doi.org/10.18203/2349-3291.ijcp20230682>

Perinatal outcome of neonates born to COVID SARS-CoV-2 positive mothers: a comparative study

Narayananappa Doddaiyah¹, Shrisagar Rattehalli Ashwathnarayana²,
Sujatha Mysore Srikantha³, Mounika Pydipally^{1*}

¹Department of Paediatrics, ²Department of Radiodiagnosis, ³Department of Obstetrics and Gynaecology, JSS Medical College, JSSAHER, Mysuru, Karnataka, India

Received: 28 February 2023

Revised: 08 March 2023

Accepted: 09 March 2023

***Correspondence:**

Dr. Mounika Pydipally,

E-mail: mounipydipalli@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: The entire world is experiencing a difficult scenario because of COVID-19 infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is imperative to have comprehensive information on how COVID-19 affects pregnancy-related outcomes when compared to outcomes in uninfected pregnant women.

Methods: Neonates born to SARS-CoV-2 positive mothers were included in the case group (n=127) and neonates born to SARS-CoV-2 negative mothers were included in the control group (n=127) in this prospective comparative study. In both groups, the mothers were matched for age, body mass index (BMI), morbidities, and parity. Neonatal morbidity and mortality in both groups were examined after neonates were monitored for 7 days after delivery.

Results: Neonatal morbidity was more among neonates born to COVID positive mothers ($p<0.05$) but mortality did not show any significant difference. There was statistically significant difference in gestation and birth weight among cases and controls. No neonate born to COVID positive mother was tested positive for COVID by reverse transcriptase-polymerase chain reaction (RT-PCR). Mean APGAR score at 1min was less among neonates born to COVID positive mothers but at 5 minutes it was almost similar among both groups.

Conclusions: According to the study's findings, maternal COVID-19 infection significantly affects perinatal outcomes, neonatal morbidity, birth weight, and neonate gestational age.

Keywords: APGAR score, COVID-19, Neonatal morbidity, Neonatal mortality, SARS-CoV-2

INTRODUCTION

An emerging illness called coronavirus disease 2019 (COVID-19) was identified in people for the first time in December 2019.¹ It can manifest in asymptomatic ways or lead to death.² It primarily spreads through respiratory droplets or direct contact, though there is some debate over vertical transmission from mothers to infants.^{3,4}

Since pregnant women are also susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, a considerable number of them are also

impacted.⁵ Though vertical transmission and complications due to COVID in neonates are rarely reported.⁶ It is essential in the understanding the impact of COVID-19 on perinatal and neonatal outcome in order to predict and recommend a management strategy for neonates with COVID-19 infection.

Because there was little information on the effects of this specific virus and a lack of high-quality data early in the pandemic, there was a lot of heterogeneity in neonatal and obstetrical management. Therefore, this prospective comparative study aimed to evaluate the perinatal outcome

of babies born to COVID positive mothers compared to babies born COVID negative mothers.

METHODS

This was a prospective comparative study on neonates born to SARS-CoV-2 positive and negative mothers at JSS Medical Hospital (JSSAHER) Mysuru, Karnataka (tertiary care center) from January 2021 to June 2022 for a period of 18 months. Pregnant mothers were subjected to COVID testing of nasopharyngeal swab by RT-PCR or RAT method. SARS-CoV-2 positive Mothers and Neonates born to them were included in the case group (n=127) and SARS-CoV-2 negative Mothers and Neonates born to them during the same study period were included in the control group (n=127) (total sample size n=254).

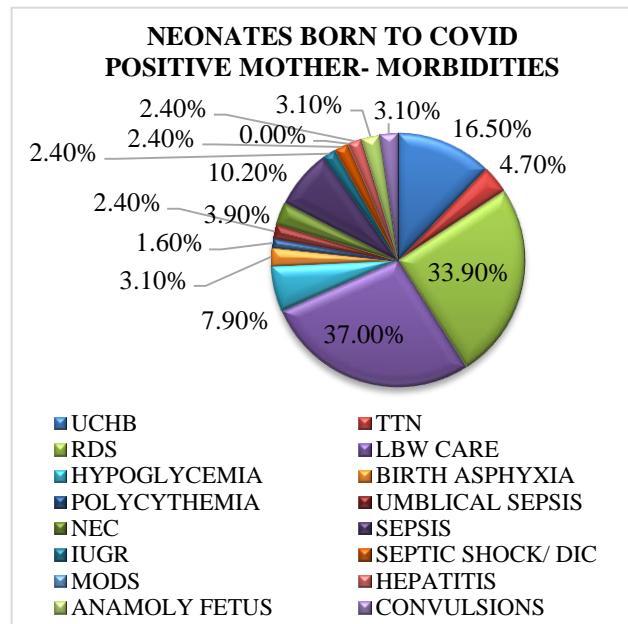
Sampling method

Purposive sampling method was used. The diagnostic test was the SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) test.

As per neonatal intensive care unit (ICU) protocol, nasopharyngeal swabs were taken from the newborns. Detailed history of mothers and neonates was taken and entered in a pretested proforma. Relevant investigations for COVID were done in neonate depending on clinical condition of baby. Mothers and neonates were followed up every day till seven days. The initial sample was taken at delivery and 48 hours later. In both groups, the mothers were matched for age, BMI, morbidities, and parity. Neonatal morbidity and mortality in both groups were examined after neonates were monitored for 7 days after delivery. Consent was obtained from study participants before starting the study. The Ethical clearance was obtained from Institute of JSS hospital before conducting the study.

Data analysis

The statistical package for the social sciences (SPSS) software trial version 22 was used to analyze the data after it was entered into Microsoft excel 2007. Analyses of nominal data were presented as percentages and figures. Standard deviation and mean were used to express continuous data. The appropriate statistical tests (Chi-square test, t test) were used, and p values of 0.05 or higher were deemed significant.


RESULTS

In present study, majority of the mothers in the study population are within 21 to 30 years in both the groups. 'primigravida' with normal BMI were predominant in both the groups. Normal vaginal delivery was more in COVID negative mother group, whereas lower segment caesarean section (LSCS) was more common in COVID positive mother group. There were cases which underwent assisted vaginal delivery among COVID positive maternal

population. but the difference between the groups was found to be not significant (Table 1).

Table 1: Characteristics of maternal study population.

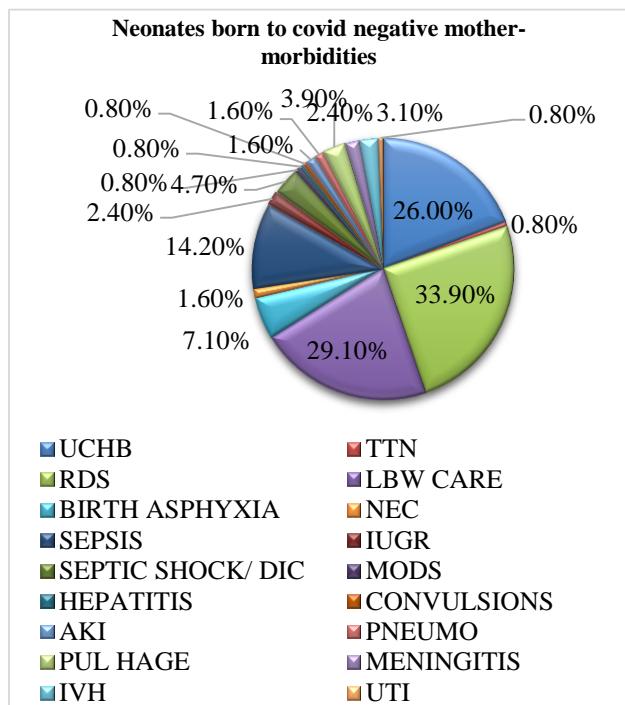

Variables	Maternal study population				P value	
	COVID		Non-COVID			
	N	%	N	%		
Age (in years)						
19 to 20	8	6.3	6	4.7		
21 to 25	51	40.2	51	40.2		
26 to 30	44	34.6	43	33.9	0.7	
31 to 35	20	15.7	19	15.0		
36 to 40	4	3.1	6	4.7		
>40	0	0.0	2	1.6		
Parity						
Primi	69	54.3	66	52.0	0.7	
Multi	58	45.7	61	48.0		
BMI categories						
Normal	55	43.3	65	51.2		
Overweight	26	20.5	32	25.2	0.09	
Obese	46	36.2	30	23.6		
Mode of delivery						
Normal vaginal	51	40.2	60	47.2	0.2	
Assisted/LSCS	76	59.8	67	52.8		

Figure 1: Morbidity pattern neonates born to COVID positive mothers.

Mean birth weight of non-COVID population was higher than COVID study population (2.6 kg >2.19), and the difference in birth weight between the groups was found to be significant. Mean APGAR score at 1 minute was lesser among neonates born to COVID positive mothers, but at 5 minutes it was almost similar among both the

groups. The difference in APGAR scores between the groups were not found to be significant. Positive pressure ventilation for neonatal resuscitation was required more in neonates born to COVID mothers and intubation was little more required among neonates born to non-COVID mothers. But the difference in neonatal resuscitation between the group was not found to be significant (Table 1).

Figure 2: Morbidity pattern neonates born to COVID negative mothers.

Table 2: Neonatal outcome-birth weight, APGAR, neonatal resuscitation.

Neonatal outcome	Mean	SD	P value
Birth weight			
Non-COVID	2.6	0.72	
COVID	2.19	0.81	<0.05
APGAR			
1 min			
COVID	7.33	1.316	
Non-COVID	7.5	1.321	0.2
5 min			
COVID	8.54	1.24	
Non-COVID	8.53	1.271	0.9
Neonatal resuscitation			
Cried after birth	110 (86.60)	110 (86.60)	
PPV	14 (11.00)	10 (7.90)	0.9
Intubation	3 (2.40)	7 (5.50)	

Intra uterine deaths were only seen in neonates delivered to COVID positive mothers (n=8). Morbidity was higher among neonates born to COVID positive mothers when compared with neonates born to non-COVID mothers (78% >52%). The difference in neonatal morbidity between the groups was found to be statistically significant. Among morbidities low birth weight (LBW) and respiratory distress (RDS) was common among both the groups (Figures 1 and 2). Neonatal mortality among neonates born to COVID and non-COVID mothers were almost equal in present study (3.1 versus 3.9) (Table 3).

Table 3: Neonatal outcome – morbidity and mortality.

Perinatal outcome	COVID		Non-COVID		P value
	N	%	N	%	
IUD	8	6.3	0	0	<0.05
Neonatal morbidity	99	78.0	66	52.0	<0.05
Neonatal mortality	4	3.1	5	3.9	>0.05

DISCUSSION

Pregnancy changes the body's immune system and general response to viral infections, which occasionally results in more severe symptoms. Early in the pandemic, there was a significant amount of variation in obstetrical and neonatal therapy because of a lack of knowledge about the effects of this unique virus and poor data available in countries like India. Hence present longitudinal study was aimed to determine perinatal outcome of babies born to COVID positive mothers compared to babies born COVID negative mothers in a tertiary care center (JSS hospital Mysuru) for a period of 18 months. In present study, COVID positive and negative mothers were matched in terms of age, trimester, parity and BMI so that outcomes can be comparable.

India's average childbearing age in 2020 was 27.4 years, according to the World Data Atlas, which is similar to present study where maternal age group of both the study groups was between 21 to 30 years (74%).⁷ In the current study, normal vaginal deliveries were more prevalent than caesarean deliveries in the non-COVID group. Within the COVID study cohort, there were more instances of assisted vaginal birth including LSCS. Though it was not found to be significant, but supported by a meta-analysis (Debrabandere et al) done to determine the mode of delivery in pregnant women with COVID-19 during pandemic, which showed 'COVID-19' statuses alone became a common indication for cesarean delivery.⁸ A systematic review of 19 researches from different nations around the world revealed a pooled percentage of 84% of LSCS among moms who tested positive for COVID which is almost equal to our study.⁹

Mean birth weight of neonates born to non-COVID maternal population was significantly higher than neonates

born to COVID maternal population, in the present study (2.1 kg <2.6 kg). A multinational cohort study done by Giuliani et al not only showed low birth weight, but also preterm delivery prevalence more among COVID study population which is consistent with our study.¹⁰ On the contrary, in an Indian study, low birth weight prevalence did not show significance difference among neonates born to COVID infected and non-infected mothers.¹¹

At 1 and 5 minutes after birth, a baby is subjected to the quick APGAR test. How well the infant tolerated labor and delivery is assessed after one minute. The 5-minute score demonstrates to the medical professional how well the infant is doing outside of the mother's womb. Overall, it states the status of the neonate. Positive pressure ventilation and Intubation were applied frequently (13.4%) for neonatal resuscitation in COVID study population than non-COVID (though it was not significant). Neonatal resuscitation by various methods was done in almost 10% COVID study population in both first wave and second wave in India according to a recent study, which is consistent with our study.¹¹ Relative risk of 'need for resuscitation', 2 times higher in SARS-CoV-2 positive neonates when compared to negative neonates in study done by Kiran et al which was based on National Neonatology Forum (NNF) India COVID-19 registry.¹²

Neonatal morbidity (78%) was significantly higher among COVID study population when compared with non-COVID study population but mortality (10%) was almost equal. Pooled prevalence of neonatal mortality according to a study done by Panda et al was 12.64% in babies born to COVID mothers which is consistent with present study.¹³

According to a study conducted on 706 pregnant women with and 1424 pregnant women without a COVID-19 diagnosis, women who tested positive had a greater risk of maternal morbidity and newborn mortality (RR=2.2) and RR=1.59, respectively.¹⁵

Severe perinatal mortality and morbidity index was found to be twice (RR=2.14) higher among women with COVID-19 which supports present study. Similar findings were also observed in a UK national cohort study, where the risk of neonatal adverse outcomes was higher (OR=1.42), the need for intensive neonatal care was higher (adjusted OR=1.24), and for prolonged neonatal admission after birth (adjusted OR=1.61) were significantly higher for neonates whose mothers had laboratory-confirmed SARS-CoV-2 infection.¹⁶ On the other hand, in their study neonatal mortality was also higher among positive mothers, which is not coinciding with our study.

In present study there were eight IUDs in case group whereas there were no IUDs in the control group which is found to be statistically significant, this is supported by as case series done in California.¹⁷

Limitations

Small sample size, hence results may not be generalized. Also, long-term neurodevelopmental outcomes could not be studied as neonates were only followed up for a week.

CONCLUSION

The study concluded that maternal COVID-19 infection has significant impact on perinatal outcome, neonatal morbidity, birth weight and gestational age of neonate.

ACKNOWLEDGEMENTS

Authors would like to thank Dr. Narayanappa D. and Dr. Sujatha, for their constant motivation, valuable suggestions, and encouragement.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74.
2. Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng J, Li Q, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect. 2020;81(2):e16-25.
3. Sankar MJ, Neogi SB, Sharma J, Chauhan M, Srivastava R, Prabhakar PK, et al. State of newborn health in India. J Perinatol. 2016;36(S3):S3-8.
4. Di Toro F, Gjoka M, Di Lorenzo G, De Santo D, De Seta F, Maso G, et al. Impact of COVID-19 on maternal and neonatal outcomes: a systematic review and meta-analysis. Clin Microbiol Infect. 2021;27(1):36-46.
5. Elshafeey F, Magdi R, Hindi N, Elshebiny M, Farrag N, Mahdy S, et al. A systematic scoping review of COVID-19 during pregnancy and childbirth. Int J Gynaecol Obstet. 2020;150(1):47-52.
6. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809-15.
7. World data Atlas-India-demographics-fertility India. Mean age of childbearing. 2019. Available at: <https://knoema.com/atlas/India/topics/Demographics/Fertility/Age-of-childbearing>. Accessed on 08 December 2022.
8. Debrabandere ML, Farabaugh DC, Giordano C. A Review on mode of delivery during COVID-19 between December 2019 and April 2020. Am J Perinatol. 2021;38(4):332-41.

9. Di Mascio D, Khalil A, Saccone G, Rizzo G, Buca D, Liberati M. Outcome of corona virus spectrum infections (SARS, MERS, COVID-19) during pregnancy: a systematic review and meta-analysis. *Am J Obstet Gynecol.* 2020;2(2):100107.
10. Giuliani F, Oros D, Gunier RB, Deantoni S, Rauch S, Casale R. Effects of prenatal exposure to maternal COVID-19 and perinatal care on neonatal outcome: results from the INTERCOVID Multinational Cohort Study. *Am J Obstet Gynecol.* 2022;227(3):488.e1-17.
11. Giuliani F, Oros D, Gunier RB, Deantoni S, Rauch S, Casale R. Effects of prenatal exposure to maternal COVID-19 and perinatal care on neonatal outcome: results from the INTERCOVID Multinational Cohort Study. *Am J Obstet Gynecol.* 2022;227(3):488.e1-17.
12. More K, Chawla D, Murki S, Tandur B, Deorari AK, Kumar P. Outcomes of neonates born to mothers with Corona virus disease 2019 (COVID-19) - National Neonatology Forum (NNF) India COVID-19 registry. *Indian Pediatr.* 2021;58(6):525-31.
13. Panda SK, Mishra A, Pathak M. Clinical outcome of neonates born to SARS- CoV-2 positive mothers in India: A systematic review and meta-analysis. *Cureus.* 2022;14(3):e22958.
14. Rani M, Khan MNA, Ahmad S, Maroof M, Pant P, Awasthi S. Study of clinico-epidemiological profile of COVID-19 positive pregnant females in a tertiary care hospital of Kumaon region. *J Family Med Prim Care.* 2022;11(1):336-9.
15. Villar J, Ariff S, Gunier RB, Thiruvengadam R, Rauch S, Kholin A. Maternal and neonatal morbidity and mortality among pregnant women with and without COVID-19 infection: The INTERCOVID multinational cohort study: The INTERCOVID multinational cohort study. *J Am Med Assoc Pediatr.* 2021;175(8):817-26.
16. Gurol-Urganci I, Jardine JE, Carroll F, Draycott T, Dunn G, Fremeaux A. Maternal and perinatal outcomes of pregnant women with SARS-CoV-2 infection at the time of birth in England: national cohort study. *Am J Obstet Gynecol.* 2021;225(5):522.e1-11.
17. Plotzker RE, Sowunmi S, Eckert V, Barnes E, Ngo V, Stockman LJ, et al. Second and third trimester fetal death in the setting of COVID-19: A California 2020 case series: A California 2020 case series. *Matern Fetal Med.* 2022;4(2):127-9.

Cite this article as: Doddaiah N, Ashwathnarayana SR, Srikantha SM, Pydipally M. Perinatal outcome of neonates born to COVID SARS-CoV-2 positive mothers: a comparative study. *Int J Contemp Pediatr* 2023;10:458-62.