

Original Research Article

DOI: <https://dx.doi.org/10.18203/2349-3291.ijcp20230725>

Epidemiology and clinical course of bronchiolitis in hospitalized children in tertiary care hospital in Kashmir

Mohammad Imran Malik¹, Khurshid Ahmad Wani¹, Ruhail Ahmad Baba¹,
Irshad Ahmad Kumar^{2*}

¹Department of Pediatrics, GMC Srinagar, Jammu and Kashmir, India

²Directorate Health Services Kashmir, Jammu and Kashmir, India

Received: 26 January 2023

Revised: 01 March 2023

Accepted: 02 March 2023

***Correspondence:**

Dr. Irshad Ahmad Kumar,

E-mail: irshadahmadkumar@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Bronchiolitis is the commonest lower respiratory tract infection in children < 2 years of age and is responsible for the majority of their pediatrician visits and hospital admission during the winter season. The aim of this study was to describe the epidemiological data, seasonal trends, clinical characteristics, and outcomes of children admitted with bronchiolitis in pediatric hospital GMC Srinagar.

Methods: This was a retrospective observational study in children less than 2 years of age admitted in department of pediatrics in GMC Srinagar. Data were collected through review of the medical records of patients with a diagnosis of bronchiolitis on discharge and analyzed through SPSS 20.

Results: A total of 228 infants were enrolled in the study. The majority were males (60.08%). The median age on admission was 5.5 months, exclusive breastfeeding was the mode of feeding in majority and 8.77% were ex-preterm. Respiratory syncytial virus (RSV) was identified in majority (103) and admission peak was from October to March. Most of the patients presented on day 3 of the illness. Most patients 45.17% were having feeding difficulties and chest auscultation was normal in about 22% of the children. Oxygen supplementation was administered to 85.52% of the children. The 32 children (14.03%) required admission to PICU. Mechanical ventilation was required in 6 children (18.75%). No death occurred in infants while in the hospital.

Conclusions: RSV has been found to be the main responsible virus. Management of bronchiolitis is usually symptomatic as recommended by most of the guidelines.

Keywords: Bronchiolitis, Winter, RSV

INTRODUCTION

Acute bronchiolitis is a diagnostic term used to describe the clinical picture produced by several different viral lower respiratory tract infections in infants and very young children.

Bronchiolitis is the commonest lower respiratory tract infection in children < 2 years of age and is responsible for the majority of their pediatrician visits and hospital admission during the winter season.^{1,2}

The infection is mostly caused by RSV in approximately more than 50% of cases.³ Other causative viruses include influenza, parainfluenza, adenovirus and metapneumovirus.^{4,5} The most severe cases occur mainly in previously healthy term infants. Young age, prematurity, chronic lung disease, congenital heart disease, immune deficiency and low socioeconomic status are the risk factors for severe illness.⁶

Usual symptoms are running nose, proceeding over 2 to 4 days to a characteristic harsh moist cough with pyrexia

that is typically below 39°C.⁷ The time to peak symptoms of 4 days is associated with the peak in viral load varying from infant to infant.⁸ Physical findings include an increased respiratory rate, chest retractions, use of accessory muscles, wheeze, crackles, and reduced oxygen saturations. In younger infants' apnea may be a presenting sign, sometimes in the absence of other features of bronchiolitis.⁹

Aim

The aim of this study was to describe the epidemiological data, seasonal trends, clinical characteristics, and outcomes of children admitted with bronchiolitis in pediatric hospital GMC Srinagar.

METHODS

This was a retrospective observational study in children less than 2 years of age admitted in department of Pediatrics in GMC Srinagar. Data were collected through review of the medical records of all patients with a diagnosis of bronchiolitis on discharge within one year (January 2022 December 2022).

Inclusion criteria

Inclusion criteria involved children≤ 2 years admitted with the clinical diagnosis of bronchiolitis on the admission made by the attending pediatrician based on the history of cough or running nose and cough, tachypnea, hypoxia subcostal or intercostal retractions, nasal flaring, grunting, with wheezing and/or crackles on examination. Indications for admission included worsening of the respiratory status, decreased oral intake, and the requirement for oxygen or parenteral therapy. Only those with a discharge diagnosis of bronchiolitis were analyzed.

Exclusion criteria

Children with bacterial co-infections (meningitis, bacteremia, pyelonephritis, or pneumonia). Children with history of chronic cardiac, respiratory, endocrine disease or cystic fibrosis, renal and neurologic problems

Statistical analysis

The data was collected in Microsoft excel and analyzed through SPSS 20. Proportions were compared with the Chi-squared test/ the Fisher exact test when appropriate. The student t-test was used to compare the means of normally distributed variables between 2 groups.

RESULTS

Clinical and demographic characteristics

A total of 228 infants were enrolled in the study. The majority were males (60.08%). The median age on

admission was 5.5 months. Exclusive breastfeeding was the mode of feeding of 119 infants (52.2%), twenty infants (8.77%) were ex-preterm, of whom four were born before 30 weeks of gestation. None of the patients had received palivizumab prophylaxis. Ten children had a medical history suggestive of reactive airway disease (4.38%) as shown in Table 1.

Table 1: Clinical and demographic data.

Variables	N (%)
Total no. of patients	228
Gender	Male 137 (60.08)
	Female 91 (39.92)
Median age on admission (Months)	5.5
Exclusive breast feeding	119 (52.2)
Ex-preterm	20 (8.77)
Reactive airway disease	10 (4.38)

Viral detection

RSV was identified in 103 infants (45.2%), adenovirus in 27 (11.85%), influenza in 27 (11.85%), coronavirus in 25 (10.96%) and other viruses were isolated in <3% patients. No viruses were identified in 40 patients (17.5%).

Seasonality

Admissions with bronchiolitis occurred throughout the year with a significant peak from October to March (Table 2).

Table 2: Monthly distribution of bronchiolitis patients.

Months	N
January	45
February	41
March	25
April	10
May	4
June	8
July	3
August	7
September	5
October	12
November	20
December	48

Clinical characteristics

Most of the patients presented on day 3 of the illness (range 2-5 days). On admission, 45.17% were having feeding difficulties, with associated vomiting in 40.35%. Fever was present in 31.14% of the infants, 28.07% had evidence of dehydration, 85.52% respiratory distress, 32.45% retractions, 2.19% grunting and cyanosis. Chest auscultation was normal in about 22% of the children (Table 3).

Table 3: Frequency (%) of the clinical features at presentation (by descending order of frequency) of 228 infants admitted to hospital for bronchiolitis.

Variables	Percentages (%)
Respiratory distress	85.52
Abnormal chest auscultation	78
Feeding difficulties	45.17
Hypoxemia (O ₂ saturation < 92% in air)	41.6
Vomiting	40.35
Chest retractions	32.45
Fever (temperature more than 38°C)	31.14
Dehydration	28.07
Cyanosis and grunting	2.29

Laboratory investigations

On admission, 16.66% of children had hyponatremia, with the lowest sodium conc. being 125 mmol/L. Mean serum urea-10 mm/l. 71.5% of children had normal white cell count, CRP positive in 63.15% of patients (Table 4).

Table 4: Percentage of abnormal investigation results in 228 infants admitted to hospital for bronchiolitis.

Variables	Percentages (%)
Hyponatremia (serum Na <135 mEq/l)	16.66
Abnormal total leucocyte count	28.5
Abnormal CXR	44.29
Repeat CXR	14.03 (32 infants)
Positive CRP	63.15

Radiological findings

Chest X-ray was performed in 100% of the patients. It was abnormal in 43.29% on presentation. A repeat CXR was required in 32 infants because of clinical worsening, at a median of 2 days after admission (range 0.5 to 9 days), and it was abnormal in 75%.

Management

Oxygen supplementation administered to 85.52% of children, 83.33% received hypertonic saline nebulization. Beta 2 agonist nebulization was given in 25%, IV Antibiotics were also administered to 15.78% (Table 5).

Table 5: Management in decreasing order of frequency expressed as percentage.

Variables	Percentages (%)
Oxygen administration	85.52
Hypertonic saline nebulization	83.33
Maintenance IV fluids	44.29
Beta 2 agonist nebulization	25
IV antibiotics	15.78

Severity of illness and complications

Complications during hospitalization included apneas in 7 patients (3.07%), and encephalopathy in 5 infants. 17 infants had pneumonia (7.45%), 13 had acute otitis media (5.70%) (Table 6).

Table 6: Complications observed in 228 infants admitted in hospital (expressed as percentage).

Variables	Percentages (%)
Apnea	3.07
Encephalopathy	2.19
Pneumonia	7.45
Otitis media	5.70

The 32 children (14.03%) required admission to PICU. Additional oxygen administration by high flow nasal cannula was administered to 22 children (68.75%). Mechanical ventilation was required in 6 children (18.75%). No death occurred in infants while in the hospital.

DISCUSSION

This study focused on previously healthy infants and all of those with other co-morbidities were excluded from the study.

In our study, RSV was the main responsible organism. Other causative viruses included influenza, parainfluenza, coronavirus, adenovirus, metapneu movirus, and rhinovirus. Similar findings were reported in studies from different parts of the world.¹⁰⁻²²

RSV positive disease is usually associated with a more severe course, which occurs at a lower age, requires frequent oxygen administration, and is associated with a longer hospital stay.

Male predominance (60.08% of patients) that we found in our study was the same as in reports on different age groups and from different countries.²³ Reason for this might be the narrower peripheral airways in the younger males.²⁴

The infection occurred throughout the year, with peaks during the winter months. This is in with other studies from this region.²⁵

Respiratory distress was the most common presenting complaint similar to described in previous literature, abnormal chest auscultation was found in 78% of patients in our study.^{26,27} Hyponatremia was found in 16.66% of the patients.

The sensitivity and specificity of immunofluorescence for the diagnosis of RSV infection have been reported to be in the range of 70-90%.²⁸ The lack of identified viruses in 17.55 percent of our patients could be explained by faulty

sample collection and late sample collection in the course of the illness when the viral load had already decreased.

There are several predictors of disease severity that have been described in the literature, such as male sex, young age, daycare attendance, lack of breastfeeding, chronic medical conditions, smoke exposure, and household crowding.²⁹

Management of bronchiolitis is usually symptomatic as recommended by most of the guidelines; however, most of our patients received supplemental oxygen and 3% saline nebulization. No therapies have received support across all guidelines except for the use of supplemental oxygen. Chest physiotherapy does not speed up recovery. Antibiotics, though still widely used, are of no benefit in bronchiolitis.³⁰

Some of our patients received different treatment modalities like bronchodilators. Bronchodilators are less likely to be recommended in more recent guidelines, and the theory that they may be of greater benefit in infants more likely to develop asthma has been refuted.^{31,32}

Complications during hospitalization included apneas in 7 patients (3.07%), and encephalopathy in 5 infants, 17 infants had pneumonia (7.45%), 13 had acute otitis media (5.70%).

The 32 children (14.03%) required admission to PICU. Additional oxygen administration by high flow nasal cannula was administered to 22 children (68.75%). Mechanical ventilation was required in 6 children (18.75%). No death occurred in infants while in the hospital.

The limitation of our study is its retrospective nature.

CONCLUSION

Bronchiolitis remains a common reason for admission to hospitals with significant morbidity RSV has been found to be the main responsible virus. Management of bronchiolitis is usually symptomatic as recommended by most of the guidelines. No therapies have received support across all guidelines except for the use of supplemental oxygen. Antibiotics, though still widely used, are of no benefit in bronchiolitis.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Miller EK, Gebretsadik T, Carroll KN, Dupont WD, Mohamed YA, Morin LL et al. Viral etiologies of infant bronchiolitis, croup and upper respiratory
2. Wainwright C. Acute viral bronchiolitis in children- A very common condition with few therapeutic options. *Paediatr Respir Rev.* 2010;11(1):39-45.
3. Nelson Text-Book of Pediatrics Twenty First Edition.
4. Aygün D, Erbek F, Kuşkucu M, Şener D, Köşker M, Varol F et al. The epidemiologic and clinical features of viral agents among hospitalized children with lower respiratory tract infections. *Turk. Pediatr Ars.* 2020;55(2):166-73.
5. Al-Ayed MS, Asaad AM, Qureshi MA, Ameen MS. Viral etiology of respiratory infections in children in southwestern Saudi Arabia using multiplex reverse-transcriptase polymerase chain reaction. *Saudi Med. J.* 2014;35(11):1348-53.
6. Hasegawa K, Pate BM, Mansbach JM, Macias CG, Fisher ES, Piedra PA et al. Risk factors for requiring intensive care among children admitted toward with bronchiolitis. *Acad Pediatr.* 2015;15(1):77-81.
7. Health NSW. In: PD2012_004 Infants and Children: Acute Management of Bronchiolitis. 2nd ed. Health N.M.O., editor. North Ryde: NSW Ministry of Health. 2012.
8. Skjerven HO, Megremis S, Papadopoulos NG, Mowinckel P, Carlsen KH, Lødrup Carlsen K. ORAACLE Study Group Virus type and genomic load in acute bronchiolitis: severity and treatment response with inhaled adrenaline. *J Infect Dis.* 2016;213(6):915-21.
9. Tripp RA, Dakhama A, Jones LP, Barskey A, Gelfand EW, Anderson LJ. The G glycoprotein of respiratory syncytial virus depresses respiratory rates through the CX3C motif and substance P. *J Virol.* 2003;77(11):6580-4.
10. Tsolia MN, Kafetzis D, Danelatou K, Astral H, Kallergi K, Spyridis P, Karpathios TE. Epidemiology of respiratory syncytial virus bronchiolitis in hospitalized infants in Greece. *Eur J Epidemiol.* 2003;18(1):55-61.
11. Mlinarić-Galimović G, Ugrčić I, Bozikov J. Respiratory syncytial virus infections in SR Croatia, Yugoslavia. *Pediatr Pulmonol.* 1987;3(5):304-8.
12. Simoes EA, Carbonell-Estrany X. Impact of severe disease caused by respiratory syncytial virus in children living in developed countries. *Pediatr Infect Dis J.* 2003;22(2):S13-8.
13. Kramer R, Duclos A. Cost and burden of RSV related hospitalisation from 2012 to 2017 in the first year of life in Lyon, France. *Vaccine.* 2018;S0264-410X(18):31289-1.
14. Richter J, Nikolaou E, Panayiotou C, Tryfonos C, Koliou M, Christodoulou C. Molecular epidemiology of rhinoviruses in Cyprus over three consecutive seasons. *Epidemiol Infect.* 2015;143(9):1876-83.
15. Green CA, Yeates D, Goldacre A, Sande C, Parslow RC, McShane P et al. Admission to hospital for bronchiolitis in England: trends over five decades, geographical variation and association with perinatal

illness during 4 consecutive years. *Pediatr Infect Dis J.* 2013;32(9):950-55.

characteristics and subsequent asthma. *Arch Dis Child.* 2016;101(2):140-6.

- 16. Singleton RJ, Bruden D, Bulkow LR. Respiratory syncytial virus season and hospitalizations in the Alaskan Yukon-Kuskokwim Delta. *Pediatr Infect Dis J.* 2007;26(11):S46-50.
- 17. Law BJ, Langley JM, Allen U, Paes B, Lee DSC, Mitchell I et al. The Pediatric Investigators Collaborative Network on Infections in Canada study of predictors of hospitalization for respiratory syncytial virus infection for infants born at 33 through 35 completed weeks of gestation. *Pediatr Infect Dis J.* 2004;23(9):806-14.
- 18. Hasegawa K, Jartti T, Mansbach JM, Laham FR, Jewell AM, Espinola JA et al. Respiratory syncytial virus genomic load and disease severity among children hospitalized with bronchiolitis: multicenter cohort studies in the United States and Finland. *J Infect Dis.* 2015;211(10):1550-9.
- 19. Rivera-Sepulveda A, Garcia-Rivera EJ. Epidemiology of bronchiolitis: A description of emergency department visits and hospitalizations in Puerto Rico, 2010-2014. *Trop Med Health.* 2017;45:24.
- 20. Yorita KL, Holman RC, Steiner CA, Effler PV, Miyamura J, Forbes S et al. Severe bronchiolitis and respiratory syncytial virus among young children in Hawaii. *Pediatr Infect Dis J.* 2007;26(12):1081-8.
- 21. Werno AM, Anderson TP, Jennings LC, Jackson PM, Murdoch DR. Human metapneumovirus in children with bronchiolitis or pneumonia in New Zealand. *J Paediatr Child Health.* 2004;40(9-10):549-51.
- 22. Haynes AK, Manangan AP, Iwane MK, Sturm-Ramirez K, Homaira N, Brooks WA et al. Respiratory syncytial virus circulation in seven countries with global disease detection regional centers. *J Infect Dis.* 2013;208(3):S246-54.
- 23. Falagas ME, Mourtzoukou EG, Vardakas KZ. Sex differences in the incidence and severity of respiratory tract infections. *Respir Med.* 2007;101(9):1845-63.
- 24. Figueiras-Aloy J, Manzoni P, Paes B, Simões EA, Bont L, Checchia PA et al. Defining the risk and associated morbidity and mortality of severe respiratory syncytial virus infection among preterm infants without chronic lung disease or congenital heart disease. *Infect Dis Ther.* 2016;5(4):417-52.
- 25. Koul PA, Saha S, Kaul KA, Mir H, Potdar V, Chadha M et al. Respiratory syncytial virus among children hospitalized with severe acute respiratory infection in Kashmir, a temperate region in northern India. *J Glob Health.* 2022;12:04050.
- 26. Silver AH, Nazif JM. Bronchiolitis. *Pediatr Rev.* 2019;40(11):568-76.
- 27. Florin TA, Plint AC, Zorc JJ. Viral bronchiolitis. *Lancet.* 2017;389(10065):211-24.
- 28. Schützle H, Weigl J, Puppe W, Forster J, Berner R. Diagnostic performance of a rapid antigen test for RSV in comparison with a 19-valent multiplex RT-PCR ELISA in children with acute respiratory tract infections. *Eur J Pediatr.* 2008;167(7):745-9.
- 29. Rodríguez DA, Rodríguez-Martínez CE, Cárdenas AC, Quilaguy IE, Mayorga LY et al. Predictors of severity and mortality in children hospitalized with respiratory syncytial virus infection in a tropical region. *Pediatr Pulmonol.* 2014;49(3):269-76.
- 30. Farley R, Spurling GK, Eriksson L, Del Mar C.B. Antibiotics for bronchiolitis in children under two years of age. *Cochrane Database Syst Rev.* 2014;(10):CD005189.
- 31. Skjerven HO, Rolfsjord LB, Berents TL, Engen H, Dizdarevic E, Midgaard C et al. Allergic diseases and the effect of inhaled epinephrine in children with acute bronchiolitis: follow-up from the randomized, controlled, double-blind, Bronchiolitis ALL trial. *Lancet Respir Med.* 2015;3(9):702-8.
- 32. Cahill AA, Cohen J. Improving evidence-based bronchiolitis care. *Clin Pediatr Emerg Med.* 2018;19(1):33-9.

Cite this article as: Malik MI, Wani KA, Baba RA, Kumar IA. Epidemiology and clinical course of bronchiolitis in hospitalized children in tertiary care hospital in Kashmir. *Int J Contemp Pediatr* 2023;10:493-7.