Research Article DOI: http://dx.doi.org/10.18203/2349-3291.ijcp20160146 # Prevalence of refractive error and the eye morbidity in school children in Bangalore, India ### Kartik Ramachandra*, Sahana Gilyaru, Adarsh Eregowda, Sreekrishna Yathiraja Department of Pediatrics, Rajarajeshwari medical college, Bangalore, Karnataka, India **Received:** 17 October 2015 **Accepted:** 10 December 2015 # *Correspondence: Dr. Kartik Ramachandra, E-mail: dockartiksowmya@gmail.com **Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. #### **ABSTRACT** **Background:** Refractive errors have been listed, along with cataract, trachoma, onchocerciasis and childhood blindness, among eye problems whose prevention and cure should provide enormous savings and facilitate societal developments. The main objective is to find out the prevalence of refractive error and the eye morbidity in the school children. **Methods:** One thousand students were selected from different schools in Bangalore, India. 20 schools were randomly selected from the list in the Bangalore, India during that period. Fifty students from each school were then selected adopting simple random technique. **Results:** A total of 1000 children from 20 schools were selected. However 940 were examined. The prevalence of refractive error was 10%. Mean age of the students was 9.49±2.5 years. Dominant ethnic group was Kannada speaking. Only 10.9% children were ever checked for their ophthalmic examination. Refractive error was associated with female sex but no association was found with class, age, ethnicity, parental education and other risk factors. About 1% students were color blind. Lack of association with increasing class may be due to poor educational training at Public sector schools. **Conclusions:** An increased prevalence of refractive error was found in this study. There is a need of periodical eye examination, preferably while entering and leaving the school. Keywords: Refractive error, School children, Eye morbidity #### INTRODUCTION The global initiative for the Elimination of Avoidable Blindness sets a major challenge to work relentlessly to avoid the preventable blindness. Refractive errors have been listed, along with cataract, trachoma, onchocerciasis and childhood blindness, among eye problems whose prevention and cure should provide enormous savings and facilitate societal developments. The number of visually impaired persons in the world is about 259 millions. This estimate includes 98 million persons with visual impairment due to uncorrected refractive error. Many studies have been conducted to determine the prevalence of refractive errors throughout the world.^{3,4} These studies revealed that the prevalence of refractive error varies from 1% to 8%. ⁵⁻⁸ In a study conducted at New Delhi, India refractive error was the cause in 81.7% of eyes with vision impairment. ⁹ The refractive error was responsible for 1.1% legal blindness (which is defined as vision less than 6/60) and 0.5% economic blindness reported by Kalikivayi. ¹⁰ A study by Kalikivayi revealed that out of 115 children with Visual Acuity < 6/18 vision improved by =6/18 with refraction in 109 (94%). No child was legally or economically blind after refractive correction. 10 This study aimed to determine the frequency of impaired vision in school children in order to correct the problem in the initial phase which might cause poor performance at school, thereby avoiding drop outs from school due to decreased vision. #### **METHODS** A cross sectional study was conducted to determine the frequency of eye problems in school children. All the selected schools were visited to get the list of all students and then subjects were selected by random sampling technique. A sample size of 1000 children was estimated and it was decided that 200 children will be screened in each district. A written permission was obtained from school and a verbal consent was obtained from teachers and parents. The information regarding age, sex, problems of the eye, vision etc. was recorded on a proforma and the Snellens chart was used to measure the visual acuity. The colour card and pin holes were also utilized. WHO criteria of visual acuity <6/18 were taken as visually impaired while <3/60 was taken as blindness. A visual acuity of 6/12 does not usually effect school performance and hence are not considered as visually impaired in the current international literature. The criterion of blindness was taken to mark the upper limit for the impaired visual acuity and to separate out visually impaired from blind. All children enrolled from class 1 to class 5 were included in the study. All children below 5 years and any child with congenital eye disease were excluded from study. Following variables were selected for the study, beside the socioeconomic and demographic factors; Height and weight of the child, mid arm circumference, number of siblings, number of siblings using glasses, type of eye problem, type of medicine used, (the inquiry was about drops, ointment, any local remedy e.g. honey, surma etc actual drug names were not asked) Visual Acuity, Colour blindness, Correction with pinhole. (We inquired about any problem of eye during last 15 days and if yes, verbal autopsy was done to find out about watery discharge, infection, trauma other problem.) orany After approval from ethical committee of the in case of absenteeism schools were revisited, sometimes thrice, to complete the examination for the difficult cases. A standard examination procedure was used for each study subject. All the data obtained was entered into SPSS version 13 and analyzed. Frequency tables were used to describe the data. Mean, median, mode, standard deviation and ranges were determined. The frequency of various eye problems was also determined along with 95% confidence interval. Chi square test was used to observe the association of the refractive error with respect to age, sex, education of father, occupation, ethnicity, class, and nutritional status, p-value <0.05 was considered significant. #### **RESULTS** Out of 1000 estimated students 940 were actually examined. The result showed that students had a mean age of 9.5±2.5 years, with 53.7% being female. In public sectors schools due to late admission and repeated failure one might find overage students in each class. There was a uniform distribution of students except class II which had 14.5% students. Only 10.9% students ever had ophthalmic examination. Forty five percent had some form of eye problems, watery eye and infections being the most common. More than 80% used non recommended medicines. The proportion of colour blindness was 1.1% with a 95% confidence interval between 1.097 and 1.103. The proportion of children with refractive errors was 8.9% with a 95% confidence interval between 8.89 and 8.91 as shown in Table 1. Table 1: Distribution of study variables. | Dist | ribution of st | udv variahle | og . | | | | | | | |--|-----------------|--------------|---|--|--|--|--|--|--| | Age | induction of st | uuy variabio | <u>. </u> | | | | | | | | Below 10 | 65% | | | | | | | | | | 10 and above | 35% | | | | | | | | | | Sex | 3370 | | | | | | | | | | Female | 504 | | | | | | | | | | Male | 436 | | | | | | | | | | Class | | | | | | | | | | | I II | III | IV | V | | | | | | | | 193 136 | 202 | 215 | 194 | | | | | | | | Students ever examined for eye morbidity | | | | | | | | | | | Yes | · | | | | | | | | | | No | 837 | | | | | | | | | | Eye morbidity | | | | | | | | | | | Yes | • | | | | | | | | | | No | Jo 513 | | | | | | | | | | Type of eye mo | rbidity | | | | | | | | | | No problem | Watering | Infection | Trauma | | | | | | | | 576 | 260 | 86 | 18 | | | | | | | | Type of medicines used | | | | | | | | | | | Recommended 68 | | | | | | | | | | | Non recommended | | | | | | | | | | | Color vision | | | | | | | | | | | Normal | rmal 11 | | | | | | | | | | Color blind | ind 929 | | | | | | | | | | Visually impaired corrected by pin hole | | | | | | | | | | | Yes | 84 | | | | | | | | | | No | 10 | | | | | | | | | | Refractive error | | | | | | | | | | | Yes | 84 | | | | | | | | | | No | 856 | | | | | | | | | A significant difference was noted between the type of eye problem and sex (p <0.04), boys had more watery eyes while girls had more infection as shown in Table 2. There was no significant association of frequency of refractive error with class, ethnic group and other variables in this study. Table 2: Distribution of type of morbidity by sex. | Type of morbidity | Male | Percentage | Female | Percentage | Total | Percentage | |-------------------|------|------------|--------|------------|-------|------------| | Infection | 33 | 39 | 52 | 61 | 85 | 23.4 | | Watery eyes | 137 | 52.7 | 123 | 47.3 | 260 | 71.4 | | Trauma and other | 12 | 63.2 | 7 | 36.8 | 19 | 5.2 | #### **DISCUSSION** In the present study, the prevalence of refractive error was 8.9% with a legal blindness 1.1%. Criteria for legal blindness was 6/60 as recommended by Kalikivayi et al.¹⁰ Study results are in agreement with the result of Kalikivayi et al, and Nepal BP, et al. 10,12 A lower prevalence has been reported by Dandona et al, Afghani et al, Naidoo et al, Khandekar RB et al, and Garner et al and a high prevalence has been reported by Khan et al, Qayyum S, He M, et al, Goh PP et al, Maule E et al, Hyman L et al, Gordon A and Wingert TA. 4,5,7,13-22 Mean age was in agreement with Kalikivaya et al. 10 In the present study, no association was found between age and the prevalence of refractive error. Our results are in agreement with Murthy while Kalkivayi and Junghans et al, have reported a significant association of refractive error with advancing age among the two groups (less than 10 and 10 or more). 9,10,24 In this study, a highly significant association was found between female sex and refractive error. This is similar to other studies by Afghani et al, Awan et al, Khandekar RB et al, Dandona et al. 4,7,14,16 However Kalikivayi et al, Junghans et al and Garner et al, did not find any significant association between gender and prevalence of refractive error. 10,15,23 The most important cause of vision impairment in the current study was refractive error, which is comparable with Kalikivayi et al. 10 There was a significant difference in the type of morbidity and gender while Nepal did not find any significant difference. 12 This study did not find an association of refractive error with education and occupation of father, which is similar to Murthy et al, while it is in contrast to Dandona et al, who found a significant association between father's education and prevalence of refractive error. 9,14 The prevalence of colour blindness in this study was 1.1% while Shresthe RK et al, in Kathmando found a prevalence of 2.2%. Regarding ethnicity, no significant association was observed in this study but in WHO studies this variable is taken into account because refractive errors had a strong relation with inheritance. 18 In this study frequency of eye morbidity was 45%, which is similar to Reddy SC, while Shrestha et al and Nepal et al, found a low prevalence.^{3,12,24} Infective disorders accounted for 9.1% of the morbidity in this study which are in agreement with Shrestha et al.³ It was observed that local and uncertified medicines were used for the local problem e.g. Kajal and Surma etc. #### **CONCLUSION** It was concluded that the refractive error is one of the most common cause of visual impairment. It has strong relationship with sex and was predominant in females. Majority of students were never examined for the visual acuity. It is recommended that children should be examined periodically from grade 1 to 10. Best possible time is to examine at the time of entering school and when they are leaving which makes it at least twice, during their study period. Funding: No funding sources Conflict of interest: None declared Ethical approval: The study was approved by the Institutional Ethics Committee #### REFERENCES - 1. Murthy GVS. Vision Testing for Refractive Errors in Schools 'Screening' Programmes in Schools. Journal of Community Eye Health. 2000;13:3-5. - 2. Dandona L, Dandona R. What is the global burden of visual impairment? BMC Medicine. 2006;4:6, - Shrestha RK, Joshi MR, Ghising R, Pradhan P, Shakya S, Rizyal A. Ocular morbidity among children studying in private schools of Kathmandu valley. A prospective cross sectional study. Nepal Med Coll J. 2006;8:43-6. - 4. Dandona R, Dandona L, Srinivas M, Sahare P, Narsaiah S, Munoz SR, et al. Refractive errors in children in a rural population in India. Invest Ophthalmol Vis Sci. 2002;43:615-22. - 5. Qayyum S. Refractive state of children in less than five years of age. J Surg Pakistan. 2006;11:73-5. - 6. Awan HR, Ihsan T. Prevalence of visual impairment and eye diseases in Afghan refugees in Pakistan. East Mediter Health J. 1998;4:560-6. - 7. Afghani T, Vine HA, Bhatti A, Qadir MS, Akhtar J, Tehzib M. Al-Shifa-Al-Noor (ASAN) refractive error study of one million school children. Pakistan J Ophthalmol. 2003;19:101-7. - 8. Shaikh SP, Aziz TM. Pattern of eye diseases in children of 5-15 years at Bazzertaline Area (South Karachi) Pakistan. J Coll Physicians Surg Pak. 2005;15:291-4. - 9. Murthy GV, Gupta SK, Ellwein LB, Munoz SR, Pokharel GP, Sanga L, et al. Refractive error in an urban population in New Delhi. Invest Ophthalmol Vis Sci. 2002;43:623-31. - Kalikivayi V, Naduvilath TJ, Bansal AK, Dandona L. Visual impairment in school children in Southern India. Indian J Ophthalmol. 1997;45:129-34. - 11. Wormald R. Screening for Eye Disease. J Comm Eye Health. 1999;12:29-30. - 12. Nepal BP, Koirala S, Adhikary S, Sharma AK. Ocular morbidity in school children in Kathmandu. Br J Ophthalmol. 2003;87:531-4. - 13. Naidoo KS, Raghunandan A, Mashige KP, Govender P, Holden BA, Pokharel GP, et al. Refractive error and visual impairment in African children in South Africa. Invest Ophthalmol Vis Sci. 2003;44:3764-70. - Khandekar RB, Abdu-Helmi S. Magnitude and determinants of refractive error in Omani school children. Saudi Med J. 2004;25:1388-93. - 15. Garner LF, Kinnear RF, McKellar M, Klinger J, Horander MS, Grasvenor T. Refraction and its components in Melanesian school children in Vanuatu. Am J Optom Physiol. Opt 1988;65:182-9. - Khan AA, Hafeez T, Hameed S. Prevalence of refractive error in school children. Am King Edward Med Coll. 1997;3:104-5. - 17. He M, Xu J, Yin Q, Ellwein LB. Need and challenges of refractive correction in urban Chinese school children. Optom Vis Sci. 2005;82:229-34. - 18. Goh PP, Abgariyah Y, Pokharel GP, Ellwein LB Refractive error and visual impairment in schoolage children in Gombak District, Malaysia. Ophthalmology. 2005;112:678-85. - 19. Maul E, Barroso S, Munoz SR, Sperduto RD, Ellwein LB. Refractive error study in children: results from La Florida, Chile. Am J Ophthalmol. 2000;129:445-54. - 20. Hyman L, Wu SY, Connell AM, Scha Chat A, Nemeswe B, Hennis A. Prevalence and causes of visual impairment in the Barbados eye study. Ophthalmology. 2001;108:1751-56. - 21. Gordon A. Refractive error in a Peurto Rican rural population. J Am Optom Assoc. 1990;61:870-4. - 22. Wingert TA. Prevalence of refractive errors on a VOSH mission to Nicaragua. J Am Optom Assoc. 1994;65:129-32. - 23. Junghans BM, Crewther SG. Prevalence of myopia among primary school children in eastern Sydney. Clin Exp Optom. 2003;86:339-45. - 24. Reddy SC, Hassan M. Refractive errors and other eye diseases in primary school children in Petaling Jaya, Malysia. Asian J Ophthalmol. 2006;8:195-8. Cite this article as: Ramachandra K, Gilyaru S, Eregowda A, Yathiraja S. Prevalence of refractive error and the eye morbidity in school children in Bangalore, India. Int J Contemp Pediatr 2016;3:138-41.