

## Original Research Article

DOI: <http://dx.doi.org/10.18203/2349-3291.ijcp20200115>

# A study on vitamin D levels in preterm and term neonates and their mothers

Deepa J. Thomas, Habeeb U. Khan\*, Saritha Paul, Jaidev M. D., Pavan Hegde

Department of Pediatrics, Father Muller Medical College, Mangalore, Karnataka, India

Received: 21 November 2019

Revised: 24 December 2019

Accepted: 30 December 2019

**\*Correspondence:**

Dr. Habeeb U. Khan,

E-mail: habibkhans@fathermuller.in

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

## ABSTRACT

**Background:** Vitamin D is a fat-soluble vitamin which has immunomodulatory and anti-inflammatory effects. Vitamin D deficiency is a worldwide problem and yet is one of the most under diagnosed and under treated nutritional deficiency. Despite India being in the tropical zone with plentiful sunlight, there is a wide prevalence of vitamin D deficiency.

**Methods:** Cross sectional descriptive study done in a tertiary care hospital involving 30 mother baby dyads equally divided into term and preterm babies. Maternal vitamin D levels (before delivery) and cord blood vitamin D levels (after delivery) were estimated.

**Results:** All the mothers had low vitamin D levels, 93% having deficiency and 7% having insufficiency. The maternal vitamin D levels correlated with cord blood vitamin D levels. There was significant correlation between maternal vitamin D levels and cord blood vitamin D levels with maternal age and parity. There was no correlation between maternal vitamin D levels with gestational age, sociodemographic profile or neonatal anthropometry.

**Conclusions:** Vitamin D deficiency is widely prevalent even in well-nourished mothers. Vitamin D supplementation may be helpful in antenatal mothers. Larger studies are needed to study the prevalence of vitamin D deficiency in mothers and babies and look for effectiveness of supplementation.

**Keywords:** Cord blood, Maternal, Preterm babies, Term babies, Vitamin D levels

## INTRODUCTION

Vitamin D is a fat-soluble vitamin which plays an important role in the optimal functioning of vital organ systems, it has immunomodulatory and anti-inflammatory effects. Vitamin D deficiency is a worldwide problem and yet, one of the most under diagnosed and under treated nutritional deficiency. There is a high prevalence of vitamin D deficiency in pregnant and lactating mothers. Studies have shown that mothers with vitamin D deficiency have higher rates of pre-eclampsia, gestational diabetes, bacterial vaginosis, preterm birth and caesarean section, all of which could have potential adverse effects on the neonate.<sup>1-3</sup>

In utero, the fetus is wholly dependent on the mother for vitamin D. The 25-hydroxy vitamin D crosses the placenta into the blood stream of the fetus with a half-life of approximately 2 months.

Thus, vitamin D is vertically transmitted.<sup>4</sup> Serum concentrations of 1,25 hydroxy vitamin D increase by 50-100% over pre pregnancy levels during the second trimester and by 100% during the third trimester which is required for fetal skeletal development, thus exposing the preterm more at risk for osteopenia.<sup>5</sup> Hence if the mother is deficient in vitamin D, the baby will be born with vitamin D deficiency and develop symptoms in infancy.

In the neonate, the clinical presentation of the deficiency may vary from short term manifestation of hypocalcemic seizures, respiratory distress syndrome, tetany in infancy, rickets in toddlers, atopic dermatitis to long term outcomes like asthma, multiple sclerosis, schizophrenia, abnormal neurocognitive outcome, type 1 diabetes mellitus and insulin resistance.<sup>6</sup>

Breast milk is thought to be a relatively poor source of vitamin D, making maternal vitamin D status during pregnancy important for vitamin D status of the child during infancy.

The most reliable marker of vitamin D status is the serum concentration of 25(OH) D levels.<sup>4</sup>

In India, there is not much data about the prevalence of hypovitaminosis D in pregnancy and in newborn and its correlation. Research has shown that even in tropical climates most of the neonates are born with deficient vitamin D levels.<sup>7</sup> Hence, this study aims to determine vitamin D deficiency in pregnant women and their new borns, to correlate maternal vitamin D levels with cord blood levels at various gestational ages.

## METHODS

This study was a cross sectional descriptive study performed in a tertiary care hospital involving 15 term and 15 preterm inborn babies and their mothers. The study was conducted over a period of three months.

### Inclusion criteria

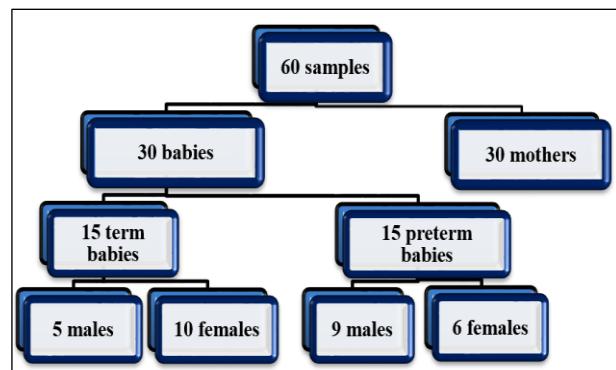
- All pregnant women presenting with spontaneous labor with no known risk factors for preterm delivery were included after obtaining written informed consent. Maternal blood was collected for estimation of vitamin D levels along with other routine labor room investigations at the time of delivery and following delivery, 3 ml of cord blood was collected from the placental side umbilical vein for estimation of vitamin D level in the neonate.

### Exclusion criteria

- Women on any drugs that affected vitamin D levels, pre-existing co morbid medical conditions, all cases of preterm delivery with known risk factors for preterm labour (previous preterm labor, multiple gestation, urinary infection, high blood pressure, developmental anomalies of fetus, placenta previa, diabetes, mothers with history of smoking or alcohol intake) and obese mothers as vitamin D gets sequestered in adipose tissues leading to vitamin D deficiency.

Vitamin D was estimated using Vitamin D total Elecsys Cobase 100 assay based on the principle of ECLIA-electrochemiluminescence for the quantitative

determination of 25 OHD and other hydroxylated vitamin D metabolites in human serum done on automated ROCHE Cobas 6000 machine.


The cut off levels for vitamin D were assigned according to the classification by US endocrine society where a value less than 20 ng/ml was considered deficiency, 20-29 ng/ml as insufficiency and  $\geq 30$  ng/ml as sufficiency.

Relevant maternal details were obtained from the maternal case files and recorded in a proforma. Data was analyzed using Excel, SPSS 23.0 IBM Corporation. Descriptive data was summarized and presented as mean, standard deviation, frequency and percentage. Categorical data was analyzed using chi square test and fisher's exact test and inferential statistics by Pearson's correlation coefficient.

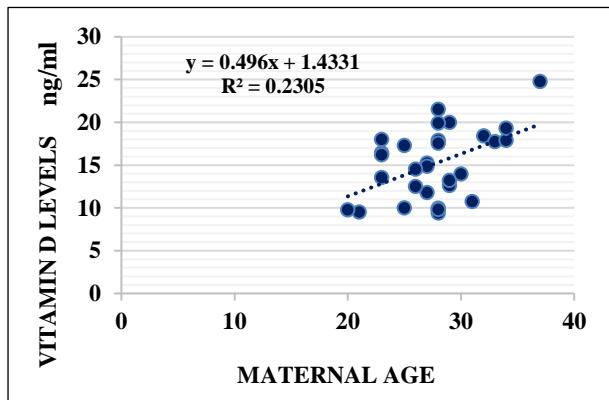
Ethical clearance was obtained from the ethical committee of the institution.

## RESULTS

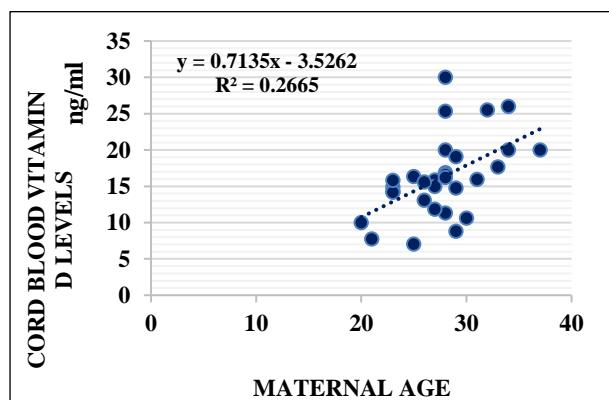
There were 30 mother- baby dyads as shown in (Figure 1).



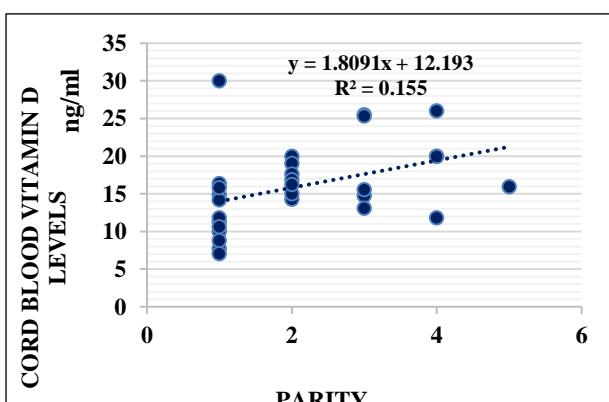
**Figure 1: Flowchart of this study population.**


There were 15 term babies and 15 preterm babies in this study with a mean birth weight of  $3.0 \pm 0.44$  kg in terms and  $1.61 \pm 0.72$  kg in preterm. The male to female ratio in this study was 1:2 in term babies and 3:1 in preterm babies (Figure 1).

The youngest mother was 21 years old and the oldest mother was 37 years old with a mean of 24 years. The maternal serum vitamin D levels showed linear correlation with maternal age (Figure 2). This finding was statistically significant with a P value of 0.007 ( $R=0.48$ ).


The cord blood vitamin D levels also showed a significant linear correlation with maternal age and the p value was 0.003 ( $R=0.516$ ) (Figure 3).

In this study, 13 mothers (43%) were primiparous and 17 mothers (56%) were multiparous. The mean vitamin D levels in the primiparous mothers was  $13.68 \pm 3.5$  ng/ml and


in the multiparous mothers was  $16.27 \pm 4.19$  ng/ml. The mean cord blood vitamin D levels in these babies was  $13.42 \pm 5.90$  ng/ml and  $18.06 \pm 4.31$  ng/ml respectively. This finding was statistically significant with a p value of 0.03 ( $R=0.39$ ) (Figure 4).



**Figure 2: Correlation between maternal age and maternal vitamin D levels which was statistically significant.**



**Figure 3: Correlation between the maternal age and cord blood vitamin D levels which was statistically significant.**



**Figure 4: Correlation between parity and cord blood vitamin D levels which was statistically significant.**

In this study the gestational age ranged from 25 weeks to 39 weeks with a mean gestational age of  $35.73 \pm 3.9$  weeks. The mean gestational age was  $38.7 \pm 0.88$  weeks in term and  $32.7 \pm 3.39$  weeks in preterm.

The mean vitamin D levels in mothers of term babies was  $15.9 \pm 4.5$  ng/ml and  $14.3 \pm 3.52$  ng/mL in mothers of preterm babies. There was no correlation between gestational ages and vitamin D levels in mothers ( $R=0.08$ ,  $p=0.907$ ) nor with cord blood vitamin D levels ( $R=0.19$ ,  $p=0.725$ ) (Table 1, Table 2 and Table 3).

The mean cord blood vitamin D levels in term babies was  $16.9 \pm 4.7$  ng/mL and  $15.4 \pm 6.09$  ng/mL in preterm babies.

The mean BMI before pregnancy was  $22.3 \pm 1.15$  kg/m<sup>2</sup>.

The sociodemographic profile in mothers (religion, dietary habits or socioeconomic class) analyzed by chi square test and fisher's exact test showed no association with cord blood vitamin D levels. None of the mothers were taking vitamin D supplements during pregnancy.

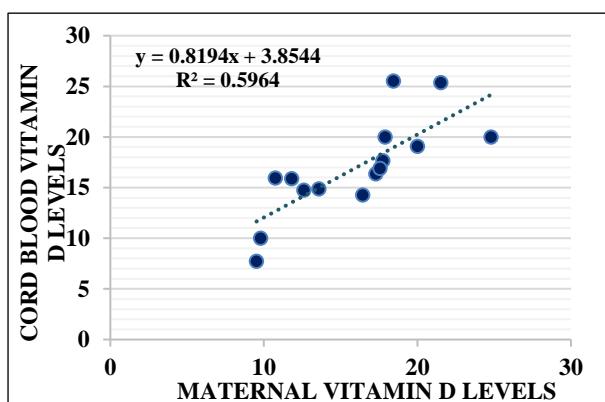
In this study all the mothers had low vitamin D levels with 93% having deficiency with 20% had severe deficiency ( $<10$  ng/mL) and 7% having insufficient vitamin D as shown in (Table 1). The mean maternal serum vitamin D levels were  $15.15 \pm 4.83$  ng/ml.

The cord blood vitamin D levels were normal in only 3% of babies. 83% had deficiency and 13% had insufficiency, with 13% having severe deficiency ( $<10$  ng/mL) as shown in table 3. The mean cord blood vitamin D levels were  $16.21 \pm 5.43$  ng/ml.

There was no association between the cord blood vitamin D levels with birth weight ( $R=0.01$ ,  $p=0.480$ ), birth length ( $R=0.01$ ,  $p=0.415$ ) and birth head circumference ( $R=0.03$ ,  $p=0.257$ ).

There was a significant correlation between the maternal vitamin D levels and cord blood vitamin D levels. ( $R=0.77$ ,  $p=0.000016$ ) (Figure 5).

**Table 1: Correlation between gestational age and maternal vitamin D levels.**


| Gestational age (weeks) | Vitamin D levels in mothers (ng/ml) |         |        |     | p value |
|-------------------------|-------------------------------------|---------|--------|-----|---------|
|                         | <20                                 |         | 20-29  | ≥30 |         |
|                         | ≤10                                 | 11-20   | 20-29  | ≥30 | Total   |
| 25-27                   | 0                                   | 2       | 0      | 0   | 1       |
| 28-30                   | 0                                   | 3       | 0      | 0   | 3       |
| 31-33                   | 1                                   | 1       | 0      | 0   | 3       |
| 34-36                   | 3                                   | 5       | 0      | 0   | 8       |
| 37-39                   | 2                                   | 11      | 2      | 0   | 15      |
| Total                   | 6                                   | 22      | 2      | 0   | 30      |
|                         | (20%)                               | (73.3%) | (6.6%) |     |         |

**Table 2: Cord blood vitamin D levels at various gestational ages.**

| Cord blood<br>vitamin D<br>levels<br>(ng/ml) | Gestational age |           |       | p value |
|----------------------------------------------|-----------------|-----------|-------|---------|
|                                              | Term            | Preterm   | Total |         |
| <20                                          | 12(80%)         | 13(86.6%) | 25    |         |
| 20 - 29                                      | 3(20%)          | 1(6.6%)   | 4     |         |
| ≥ 30                                         | 0(0%)           | 1(6.6%)   | 1     |         |
| Total                                        | 15(100%)        | 15(100%)  | 30    | p=0.596 |

**Table 3: Correlation of cord blood vitamin D levels with gestational age.**

| Gestational<br>age (weeks) | Vitamin d levels in babies (ng/ml) |       |         |        | p<br>value |
|----------------------------|------------------------------------|-------|---------|--------|------------|
|                            | <20                                | 20-29 | ≥30     | Total  |            |
|                            | ≤10                                | 11-20 |         |        |            |
| 25-27                      | 0                                  | 2     | 0       | 0      | 1          |
| 28-30                      | 0                                  | 3     | 0       | 0      | 3          |
| 31-33                      | 2                                  | 0     | 0       | 0      | 3          |
| 34-36                      | 0                                  | 6     | 1       | 1      | 8          |
| 37-39                      | 2                                  | 10    | 3       | 0      | 15         |
| Total                      | 4                                  | 21    | 4       | 1      | 30         |
|                            | (13%)                              | (70%) | (13.3%) | (3.3%) |            |

**Figure 5: Correlation of maternal vitamin D levels with cord blood vitamin D levels which is statistically significant.**

## DISCUSSION

Equal number of term and preterm babies (15 each) along with their mothers were included in this study. The male to female ratio was 1:2 in term babies and 3:1 in preterm babies (Figure 1). The youngest mother was 21 years and the oldest mother was 37 years with a mean of 24 years. In this study younger mothers had lower levels of vitamin D. The maternal serum vitamin D levels measured before delivery showed a linear correlation with maternal age. This finding was statistically significant with a p value of 0.007. The cord blood vitamin D levels also showed a significant linear correlation with maternal age with a p value of 0.003. Similar finding was reported in a study

done by Marshall et al, who stated that younger maternal age was associated with cord blood vitamin D deficiency or insufficiency.<sup>8</sup>

13 mothers were primiparous and 17 were multiparous. The mean vitamin D levels in the primiparous mothers was  $13.68 \pm 3.5$  ng/ml and in the multiparous mothers was  $16.27 \pm 4.19$  ng/ml. The mean cord blood vitamin D levels in these babies was  $13.42 \pm 5.90$  ng/ml and  $18.06 \pm 4.31$  ng/ml respectively. This finding was statistically significant with a p value of 0.03 (R=0.39) as shown in Figure 4. Similar finding was stated in a study done by Marshall et al, who reported that higher number of pregnancies were associated with cord blood vitamin D deficiency or insufficiency.<sup>8</sup>

In this study the gestational age ranged from 25 weeks to 39 weeks with a mean gestational age of  $35.73 \pm 3.9$  weeks. There was no correlation between gestational ages and maternal vitamin D levels (Table 1). This is in contrast to studies done by Milene Seori Kassai et al, and Shu Qin Wei et al, from Canada who concluded that mothers who had preterm babies had lower vitamin D concentrations compared to those who had term babies and their levels correlated to their baby's vitamin D status.<sup>2,3</sup>

This study included 15 term babies with a mean gestational age of  $38.7 \pm 0.88$  weeks and 15 preterm babies with a mean gestational age of  $32.7 \pm 0.39$  weeks. There was no correlation between gestational ages of the babies and cord blood vitamin D levels (Table 2 and 3). This was in accordance with studies done by Minoo Fallahi et al, from Iran who found no significant difference in vitamin D levels and gestational age.<sup>9</sup> Heather H Burris et al, from Boston found lower vitamin D levels in preterm babies <32 weeks in comparison to full term babies but they did not detect a clear linear association between vitamin D levels and gestational age.<sup>10</sup> Philip N Baker et al, from England reported no significant difference between the vitamin D levels in term and preterm neonates.<sup>11</sup> This was in contrast to a study done by Gurmeet Singh et al, who concluded that premature neonates had lower vitamin D levels when compared to mature neonates.<sup>12</sup>

The mean BMI in the mothers in this study was  $22.3 \pm 1.15$  kg/m<sup>2</sup>. Maternal obesity during pregnancy has been associated with lower vitamin D levels in neonates at delivery.<sup>13,14</sup> Hence obese mothers were excluded in this study.

This study did not show any association between vitamin D levels and sociodemographic profile in mothers like religion, maternal dietary habits or socioeconomic classes. Similar results were also reported by Merewood et al.<sup>15</sup> This was in contrast to various studies done by Kansuda et al, from Thailand, Woolcott C et al, from Canada and El Koumi et al, who reported that key factors associated with neonatal vitamin D levels were maternal

age, dairy intake and supplement use.<sup>16-18</sup> None of the mothers were taking vitamin D supplements during pregnancy. It is not a common practice to supplement antenatal mothers with vitamin D as part of the routine prenatal care in India and the vitamin D levels in the mothers are a reflection of one's own diet and lifestyle.

In this study all the mothers had low vitamin D levels with 93% having deficiency with 20% had severe deficiency ( $<10$  ng/mL) and 7% having insufficient vitamin D (Table 1). The mean maternal serum vitamin D levels were  $15.15\pm4.83$  ng/ml. Similar finding was reported by Shipra Kamal et al, from Ranchi and other authors.<sup>19</sup>

The cord blood vitamin D levels were normal in only 3% of our babies. 83% had deficiency and 13% had insufficiency, with 13% having severe deficiency ( $<10$  ng/mL) (Table 3). The mean cord blood vitamin D level was  $16.21\pm6.08$  ng/mL. Various authors like Shipra et al, Sachan et al, Pradeep et al, have reported a similar finding in their studies in agreement to this finding.<sup>19</sup>

This study showed that maternal vitamin D levels had a strong correlation with neonatal cord blood vitamin D levels ( $R=0.77$ ,  $p=0.000016$ ) (Figure 5). Similar results were also reported by Kansuda et al, from Thailand and Minoo Fallahi et al, from Iran.<sup>9,16</sup>

This study did not show any significant correlation with cord blood vitamin D levels and anthropometry at birth. Similar results were seen in studies done by Inderpal Singh Kocher et al, and Camargo et al, who also found no association between cord blood vitamin D status and birth weight.<sup>20,21</sup> This is in contrast to a study done by Paulraj Sathish et al, which showed a statistically significant correlation between cord vitamin D levels and anthropometry.<sup>22</sup>

Limitation of this study was group comprised of mainly urban mothers and the sample size was small due to financial constraints.

## CONCLUSION

Vitamin D deficiency is widely prevalent even in well-nourished mothers. Vitamin D supplementation may be helpful in antenatal mothers. Larger studies are needed to study the prevalence of vitamin D deficiency in mothers and babies and look for effectiveness of supplementation.

## ACKNOWLEDGEMENTS

Authors would like to thank God Almighty, their teachers, fellow colleagues and family for their support. Authors would also like to thank Father Muller Research centre for the financial help as well as all the children and their parents involved in the study.

**Funding:** Partial funding from the Institution Research Fund

**Conflict of interest:** None declared

**Ethical approval:** The study was approved by the Institutional Ethics Committee

## REFERENCES

1. Christesen HT, Elvander C, Lamont RF, Jørgensen JS. The impact of vitamin D in pregnancy on extra skeletal health in children: a systematic review. *Acta Obstetricia Gynecologica Scandinavica.* 2012;91(12):1368-80.
2. Kassai MS, Cafeo FR, Affonso-Kaufman FA, Suano-Souza FI, Sarni RO. Vitamin D plasma concentrations in pregnant women and their preterm newborns. *BMC Pregnanc Childbirth.* 2018;18(1):412.
3. Wei SQ, Qi HP, Luo ZC, Fraser WD. Maternal vitamin D status and adverse pregnancy outcomes: a systematic review and meta-analysis. *J Maternal-Fetal Neonat Med.* 2013;26(9):889-99.
4. Cadario F, Savastio S, Pozzi E, Capelli A, Dondi E, Gatto M, et al. Vitamin D status in cord blood and newborns: ethnic differences. *Italian J Pediatr.* 2013;39(1):35.
5. Singh J, Hariharan C, Bhaumik D. Role of vitamin D in reducing risk of preterm labour. *Int J Reprod Contracept Obstet Gynecol.* 2015;4(1):86-93.
6. Kovacs CS. Maternal vitamin D deficiency: fetal and neonatal implications. *Seminars Fetal Neonat Med.* 2013;18(3):129-35.
7. Naik K D, Preetha R, Ramachandran A M, Nath D. Cord Blood Vitamin D levels of Term Neonates. *Ind Pediatr.* 2015;52(1):75-6.
8. Marshall I, Mehta R, Ayers C, Dhumal S, Petrova A. Prevalence and risk factors for vitamin D insufficiency and deficiency at birth and associated outcome. *BMC Pediatr.* 2016;16(1):208.
9. Fallahi M, Afjeh A, Saneifard H, Namazi N, Kazemian M, Tabatabaee S. Comparison of vitamin D level in preterm and term infant-mother pairs: a brief study. *Iran J Neonatol IJN.* 2016;7(1):32-6.
10. Burris HH, Van Marter LJ, McElrath TF, Tabatabai P, Litonjua AA, Weiss ST, et al. Vitamin D status among preterm and full-term infants at birth. *Pediatr Res.* 2014;75(1-1):75.
11. Baker P, Wheeler S, Sanders T, Thomas J, Hutchinson C, Clarke K, et al. A prospective study of micronutrient status in adolescent pregnancy. *Am J Clin Nutrit.* 2009;89(4):1114-24.
12. Singh G, Singh G, Brar H, Malik S. Vitamin D levels in preterm and term neonates at birth. *Intern J Contemp Paediatr.* 2017;4(1):48-52.
13. Holick MF. Vitamin D Deficiency. *N Engl J Med.* 2007;357:266-81.
14. Seto T, Tabangin M, Langdon G, Mangeot C, Dawodu A, Steinhoff M, et al. Racial disparities in cord blood vitamin D levels and its association with

small-for-gestational-age infants. *J Perinatol.* 2016;36(8):623-8.

- 15. Merewood A, Mehta SD, Chen TC, Bauchner H, Holick MF. Association between vitamin D deficiency and primary cesarean section. *J Clin Endocrinol Metabol.* 2009;94(3):940-5.
- 16. Ariyawatkul K, Lersbuasin P. Prevalence of vitamin D deficiency in cord blood of newborns and the association with maternal vitamin D status. *Europ J Pediatr.* 2018;177(10):1541-5.
- 17. Woolcott C, Giguère Y, Weiler H, Spencer A, Forest J, Arsmson B, et al. Determinants of vitamin D status in pregnant women and neonates. *Canad J Pub Health.* 2016;107(4-5):410-e416.
- 18. El Koumi MA, Ali YF, Abd El Rahman RN. Impact of maternal Vitamin D status during pregnancy on neonatal Vitamin D status. *Turk J Pediatr.* 2013;55:371-7.
- 19. Kamal S, Jha S, Sharma AK, Kumar D. Study on Prevalence of Vitamin D Deficiency Among Newborns And Their Mothers in Jharkhand. *IOSR J Dental Med Sci.* 2016;15(6):1-4.
- 20. Kochar IS, Vij V, Sethi A. Prevalence of Vitamin D deficiency in cord blood. *J Clin Neonatol.* 2019;8(1):10.
- 21. Camargo CA, Ingham T, Wickens K, Thadhani RI, Silvers KM, Epton MJ, et al. Vitamin D status of newborns in New Zealand. *Bri J Nutri.* 2010;104(7):1051-7.
- 22. Sathish P, Sajeethakumari R, Balakrishnan D, Muthusami M. Correlation between maternal and neonatal blood vitamin D levels and its effect on the newborn anthropometry. *Int J Reprod Contracept Obstet Gynecol.* 2016;5:2983-8.

**Cite this article as:** Thomas DJ, Khan HU, Paul S, Jaidev MD, Hegde P. A study on vitamin D levels in preterm and term neonates and their mothers. *Int J Contemp Pediatr* 2020;7:387-92.