Abstract

Background: Colour is an unreliable indicator of tissue oxygenation in the first few minutes of life. Little data is available about the progression of SpO₂ in the new-borns delivered by normal vaginal route and caesarean section. So this study was conducted. The objectives of this study were to compare the new-born’s colour and oxygen saturation readings as an index of oxygenation and to find a more reliable one, and to compare the oxygen saturation profiles of the new-borns delivered by normal vaginal route and caesarean section.

Methods: This was a prospective observational study conducted over a period of one year in a tertiary care hospital on 500 newborns between 28-42 weeks, requiring routine care. Simultaneous assessment of colour and oxygen saturation readings was done at 30 second intervals after birth till 10 minutes of life.

Results: No significant difference has been found in the median SpO₂ values of the new-borns requiring routine care that were pink and cyanosed since birth (p≥ 0.05). About 5.30 minutes required for most of the cyanosed new-borns to become pink (p≤ 0.05). Mean time±SD required for cyanosed new-born for getting pink was 1.96±1.33 minutes. Oxygen saturation rises slowly in new-borns delivered by caesarean section as compared to those delivered vaginally, especially in the first few minutes of life and more in preterm than term new-borns.

Conclusions: Unnecessary use of oxygen can be avoided by taking into account pulse oximetry. Separate sets of reference SpO₂ should be used for new-borns delivered by normal vaginal route and caesarean section.

Keywords: Caesarean section, Colour, Cyanosis, New-born SPO₂, Normal vaginal delivery, Oxygen saturation

Introduction

Assessing the oxygenation status of the newborns at birth and immediately after that has always been a difficult task for paediatricians. Traditionally it has been done with the assessment of the colour of the newborn at birth and further, the requirement of oxygen was also detected on the basis of colour (pink or blue). But there has always been a disagreement about the colour of the newborn and substantial inter-observer and intra-observer variations exist about the colour and the reference SpO₂ at which the newborn is considered pink or cyanosed (blue).1

The American Academy of Pediatrics (AAP) and American Heart Association (AHA) revised the guidelines of neonatal resuscitation in 2010. The concept of pulse oximetry in neonatal resuscitation was introduced in 2010 by the American Academy of paediatrics (AAP) and the International Liaison Committee on Resuscitation (ILCOR) in place of visual assessment of colour for both term and preterm newborns. Also, the reference range of oxygen saturation from to 10 minutes of life has been provided in the algorithm of neonatal resuscitation, calculated on the basis of existing data on oxygen saturation in healthy term newborns in the first few minutes of life.2,3
Pulse oximetry provides rapid, continuous and accurate information of oxygenation in the form of SpO2. Fetal SpO2 is 50-60%, dropping to an intrapartum mean of 40-50%. Hence it is normal for a healthy newborn to be cyanosed in the first few minutes of life after birth.4,5

Administering 100% oxygen to a spontaneously breathing newborn based only on visual assessment of colour may be unnecessarily invasive and may lead to potentially harmful hyperoxia.5 Moreover, newborns in the Indian set-up have a comparative darker complexion, which further creates a problem in the colour assessment. Also, little data is available about the progression of SpO2 in the newborns delivered by normal vaginal route or caesarean section and we use the same set of reference SpO2 for these newborns irrespective of their mode of delivery and gestational age status.

Thus to find out a better index of oxygenation, this study was conducted, hypothesizing that pulse oximetry provides a better and more reliable way of assessing the oxygenation status than colour in both term and preterm newborns. In addition, to find out the effect of mode of delivery and gestational age on the oxygen saturation profiles of the newborns, the oxygen saturation readings of the newborns delivered by normal vaginal route and caesarean section were also compared separately for term and preterm newborns.

METHODS

After taking the ethical approval from the institutional ethical committee, this prospective observational study was conducted in the new-born resuscitation corner of the labour room and operation theatre of a level-3 special care new-born unit (SCNU) of a tertiary level government medical college hospital. The process was conducted in the presence of a resident trained in neonatal resuscitation and the observer was not involved in the process of resuscitation. This study was conducted over a period of one year. A sample size of 357 newborns was obtained with 95% confidence interval. But a sample size of 500 new-borns was taken in order to have a larger sample size.

Inclusion criteria

New-borns delivered by either normal vaginal route or caesarean section between a gestational age of 28 weeks to 42 weeks (by New Ballard scoring), requiring routine care were included in this study.6

Exclusion criteria

New-borns with major congenital anomalies, requiring supplemental oxygen, medical intervention or resuscitation of any kind, extremely low birth weight (ELBW) and those born with meconium stained amniotic fluid were excluded. New-borns in which we failed to apply probes or probe was detached were also excluded.

Procedure

A written informed consent was taken from the relatives in all cases before delivery. All the enrolled new-borns were divided into two groups

- As per gestational age into term (≥37 weeks to ≤ 42 weeks) and preterm (≥28 weeks to < 37 weeks).
- As per mode of delivery into normal vaginal delivery group and caesarean section group.

In the present study, Masimo rad 5 pulse oximeter with signal extraction technology (SET) was used, which provides reliable readings even in low perfusion states and with patient movements.7,8 The pulse oximeter was set to acquire data with maximal sensitivity and there was an inbuilt recording of SpO2 and heart rate at every 2 second interval in the form of trend chart.

The umbilical cord was clamped immediately after the birth of the new-born and the baby was taken in a pre-warmed towel on a resuscitation trolley under a radiant warmer. Simultaneously, a stopwatch was started and the probe of the pulse oximeter (neonatal wristband probe) was attached to the new-born’s right hand’s wrist and then connected to the pulse oximeter, keeping in mind the method and precautions as described by the American Academy of Pediatrics.2,3,9 Simultaneously, the colour of the new-born’s lips was also noted. This simultaneous assessment of both oxygen saturation readings and colour of the new-born was done at every 30 second interval till 10 minutes of life. Similarly, the SpO2 values of the newborns delivered by normal vaginal route and caesarean section were compared from birth at every 30 second interval till 10 minutes of life separately for term and preterm new-borns.

Data for each new-born was collected manually at every 30 second interval as well as from the trend chart stored within the pulse oximeter. Also, time to record the first data of SpO2 after applying the probe was also recorded in each case. Individual readings of SpO2, colour and time were then entered into separate excel spread sheets which were then merged and analysed with Minitab software. Z-test was applied to determine the mean time for getting pink, mean time for recording first data of SpO2 and mean time to reach ≥ 90% saturation in term and preterm new-borns. SpO2 data of term new-borns delivered by normal vaginal route and caesarean section and preterm new-borns delivered by normal vaginal route and caesarean section were compared separately from birth till 10 minutes of life at every 30 second intervals and p values were calculated.

RESULTS

A total of 500 newborns were enrolled in this study, out of which 81 were excluded. So 419 new-borns were taken in this study. A total of 301 term newborns and 118 preterm newborns were enrolled with a mean (SD)
gestational age of 39.02±0.08 weeks for term newborns and 34.93±1.32 weeks for preterm newborns. The mean (SD) birth weight for term newborns was 2.621±0.010 kg and for preterm newborns was 1.98±0.08 kg. 59.18% of newborns were delivered by normal vaginal route and 40.81% by caesarean section. The characteristics of the newborns are presented in Table 1.

Table 1: Characteristics of new-borns.

<table>
<thead>
<tr>
<th>New-born’s characteristics</th>
<th>Routine care</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Birth weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td><2500 gm</td>
<td>255</td>
<td>60.85%</td>
</tr>
<tr>
<td>≥ 2500 gm</td>
<td>264</td>
<td>63.00%</td>
</tr>
<tr>
<td>Gestation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-36.6 weeks</td>
<td>118</td>
<td>28.16</td>
</tr>
<tr>
<td>37-42 weeks</td>
<td>301</td>
<td>71.83</td>
</tr>
<tr>
<td>Mode of delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVD</td>
<td>248</td>
<td>59.18</td>
</tr>
<tr>
<td>LSCS</td>
<td>171</td>
<td>40.81</td>
</tr>
<tr>
<td>Colour at the time of birth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pink</td>
<td>131</td>
<td>31.26</td>
</tr>
<tr>
<td>Blue</td>
<td>288</td>
<td>68.73</td>
</tr>
</tbody>
</table>

In this study, on simultaneously assessing the colour and oxygen saturation readings of the preterm and term newborns (Table 2 and 3), it has been found that there was statistically no significant difference in the median SpO2 values of the newborns that were pink since birth and the newborns that were blue (cyanosed).

It took about 5.30 minutes for most of the newborns that were cyanosed to become pink in both the term and preterm group and the p value was found to be insignificant (p ≥0.05) at most time intervals and especially in the first 2-3 minutes of life where it is critical to decide whether oxygen has to be given to the newborn or not. 2 tailed unpaired t-test was done to compare the median SpO2 values of the newborns that were pink and the newborns that were blue in both the term and preterm group and it gave a score of 0.759 and 0.8806 respectively. Mean time±SD required for cyanosed newborn for getting pink was 1.96±1.33 minutes with a standard error of mean of 0.079. Mean time±SD of 0.987±0.549 minutes with a standard error of mean of 0.035 was required to record the first data of SpO2 in all new-borns.

Table 2: Correlation of colour and SpO2 in preterm new-borns requiring routine care.

<table>
<thead>
<tr>
<th>Time after birth</th>
<th>Preterm (median SpO2 value)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pink</td>
<td>Median SpO2</td>
</tr>
<tr>
<td>At Birth</td>
<td>46</td>
<td>43.5</td>
</tr>
<tr>
<td>30 sec</td>
<td>60</td>
<td>46</td>
</tr>
<tr>
<td>1 min</td>
<td>81</td>
<td>58</td>
</tr>
<tr>
<td>1 min 30sec</td>
<td>102</td>
<td>62</td>
</tr>
<tr>
<td>2 min</td>
<td>108</td>
<td>65</td>
</tr>
<tr>
<td>2 min 30sec</td>
<td>112</td>
<td>67</td>
</tr>
<tr>
<td>3 min</td>
<td>112</td>
<td>70</td>
</tr>
<tr>
<td>3 min 30sec</td>
<td>112</td>
<td>73</td>
</tr>
<tr>
<td>4 min</td>
<td>112</td>
<td>75</td>
</tr>
<tr>
<td>4 min 30sec</td>
<td>112</td>
<td>77</td>
</tr>
<tr>
<td>5 min</td>
<td>113</td>
<td>79</td>
</tr>
<tr>
<td>5 min 30sec</td>
<td>115</td>
<td>83</td>
</tr>
</tbody>
</table>
Table 3: Correlation of colour and SpO₂ in term new-borns requiring routine care.

<table>
<thead>
<tr>
<th>Time after birth</th>
<th>Term (median SPO₂ value)</th>
<th>Pink</th>
<th>Median SPO₂</th>
<th>Blue</th>
<th>Median SpO₂</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Birth</td>
<td></td>
<td>86</td>
<td>48</td>
<td>215</td>
<td>46</td>
<td>0.707</td>
</tr>
<tr>
<td>30 sec</td>
<td></td>
<td>112</td>
<td>50</td>
<td>189</td>
<td>54</td>
<td>0.0654</td>
</tr>
<tr>
<td>1 min</td>
<td></td>
<td>148</td>
<td>59</td>
<td>153</td>
<td>59</td>
<td>0.174</td>
</tr>
<tr>
<td>1 min 30 sec</td>
<td></td>
<td>175</td>
<td>63</td>
<td>126</td>
<td>62</td>
<td>0.001</td>
</tr>
<tr>
<td>2 min</td>
<td></td>
<td>213</td>
<td>65</td>
<td>88</td>
<td>64</td>
<td>0.006</td>
</tr>
<tr>
<td>2 min 30 sec</td>
<td></td>
<td>247</td>
<td>68</td>
<td>54</td>
<td>68</td>
<td>0.729</td>
</tr>
<tr>
<td>3 min</td>
<td></td>
<td>272</td>
<td>71</td>
<td>29</td>
<td>70</td>
<td>0.653</td>
</tr>
<tr>
<td>3 min 30 sec</td>
<td></td>
<td>282</td>
<td>74</td>
<td>19</td>
<td>72</td>
<td>0.84</td>
</tr>
<tr>
<td>4 min</td>
<td></td>
<td>283</td>
<td>76</td>
<td>18</td>
<td>73.5</td>
<td>0.062</td>
</tr>
<tr>
<td>4 min 30 sec</td>
<td></td>
<td>284</td>
<td>79</td>
<td>17</td>
<td>75</td>
<td>0.008</td>
</tr>
<tr>
<td>5 min</td>
<td></td>
<td>286</td>
<td>83</td>
<td>15</td>
<td>80</td>
<td>0.112</td>
</tr>
<tr>
<td>5 min 30 sec</td>
<td></td>
<td>289</td>
<td>85</td>
<td>12</td>
<td>82</td>
<td>0.057</td>
</tr>
</tbody>
</table>

Table 4 and Figure 1 and 2 illustrates the comparison of median SPO₂ values of term and preterm newborns delivered by vaginal and caesarean route which also shows that the SPO₂ values rise slowly in newborns delivered by caesarean route than normal vaginal route though both acquire ≥ 90% saturation within 10 minutes of life. Further, the SPO₂ values of preterm newborns delivered by caesarean section were found on the lower side as compared to term newborns delivered by caesarean section, especially in the first few minutes of life.

DISCUSSION

Assessment of colour in the new-borns during neonatal resuscitation has always been a matter of debate. In this study, on simultaneously assessing the colour and recording the oxygen saturation values, this fact has been elucidated that it may be possible for a newborn to be cyanosed in the initial few minutes of life after birth, providing the oxygen saturation values are coming within the reference range.

Donnell et al used the video recordings of the newborns to find out if the clinicians agreed whether infants were pink and the oxygen saturation at which the infants first looked pink and concluded that there was substantial variation in the perception of newborn infant’s colour among the neonatal staff and there was disagreement between observers about the colour of the same infant and the SPO₂ at which they perceive infants to be pink varied widely.¹

According to the American Academy of Pediatrics and American Heart Association 2010 guidelines, there is a large body of evidence that blood oxygen levels in uncompromised babies generally do not reach the extra uterine values until approximately 10 minutes following birth. Oxyhemoglobin saturation may normally remain in the 70-80% range for several minutes, thus resulting in the appearance of cyanosis.²³ Many studies also support the fact that it may take up to 10 minutes for oxyhemoglobin saturation to reach up to 90%. Dawson et al found that during the first few minutes of life, oxygen saturation increases from intra-partum levels of 30-40%. Thus clinical assessment of skin colour during neonatal resuscitation is unreliable.⁷ Sucheta et al also support the assertion that it may take up to 10 minutes for the oxyhemoglobin to reach up to a saturation level of 90% and only visual interpretation of cyanosis without doing pulse oximetry could lead to adverse outcomes in the baby. In their study, it took 7.4 minutes to reach a median preductal SPO₂ of 90%.⁸

![Figure 1: Progression of SpO₂ in term new-borns delivered by normal vaginal route and caesarean section.](image)

Similarly, several other studies from various parts of the world have reported time between 8-15 minutes to reach SPO₂ ≥ 90%. In the present study, mean time of 8.35±1.16 min (IQR of 7.3 to 9.3 min) was required for term newborns and 9.32±0.59 min (IQR of 9-10 min) for preterm newborns to reach the SPO₂ ≥ 90%. Thus preterm newborns took longer time to acquire ≥90% saturation status than term newborns and there are more
chances for them to be cyanosed for longer duration than term newborns.

![Figure 2: Progression of SpO2 in preterm new-borns delivered by normal vaginal route and caesarean section.](image)

Many other studies came out with the same result like Dawson et al found that it took a median of 7.9 minutes (IQR: 5-10 minutes) to reach SpO2 of ≥ 90% and also showed that preterm newborns took longer than term newborns. The median SpO2 at 5 minutes for preterm newborns was 86% compared to 92% for term newborns (p≤ 0.001). Thus administering 100% oxygen to a spontaneously breathing newborn based only on visual assessment of cyanosis may be unnecessarily invasive and lead to potentially harmful hyperoxia. Mean time±SD of recording first data of SpO2 in the present study was 0.98±0.549 minutes with a standard error of mean of 0.035, which is supported by other studies, like in a study conducted by Rabi et al in 2004-2005 on infants ≥ 35 weeks gestation not requiring supplemental oxygen over a period of 10 minutes after birth, it took a median time of about 82 seconds (IQR 30-140 seconds) to record a stable SpO2 reading after probe placement. Similarly, in a study conducted by Kamlin and O’ Donnell et al to find out the oxygen saturation in healthy infants immediately after birth, SpO2 readings were obtained within 60 seconds of age in 92 out of 175 (53%) infants. Also, it took longer for preterm newborns to record the first data of SpO2. Thus if we go by colour, preterm new-borns are more likely to be cyanosed in the initial few minutes of life and we erroneously flood them with oxygen which is actually not required.

<table>
<thead>
<tr>
<th>Time after birth</th>
<th>Term NVD (Q1-Q3)</th>
<th>Term LSCS (Q1-Q3)</th>
<th>P value</th>
<th>Preterm NVD (Q1-Q3)</th>
<th>Preterm LSCS (Q1-Q3)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth</td>
<td>48 (46-50.5)</td>
<td>46.5 (46-47.75)</td>
<td>p>0.05</td>
<td>50 (46-55.5)</td>
<td>41 (40-45)</td>
<td>p<0.01</td>
</tr>
<tr>
<td>1 min</td>
<td>60 (59-62)</td>
<td>58 (57-59)</td>
<td>p<0.01</td>
<td>59 (58-60)</td>
<td>58 (57-59)</td>
<td>p<0.01</td>
</tr>
<tr>
<td>2 min</td>
<td>67 (65-68)</td>
<td>63 (62-64)</td>
<td>p<0.01</td>
<td>65 (64-66)</td>
<td>62 (60-62)</td>
<td>p<0.01</td>
</tr>
<tr>
<td>3 min</td>
<td>72 (70-73.25)</td>
<td>69 (66-70)</td>
<td>p<0.01</td>
<td>70 (69-71)</td>
<td>70 (69-71)</td>
<td>p>0.05</td>
</tr>
<tr>
<td>4 min</td>
<td>76 (75-78)</td>
<td>74 (69-77)</td>
<td>p<0.01</td>
<td>75 (73-77)</td>
<td>74.5 (73-75)</td>
<td>p>0.05</td>
</tr>
<tr>
<td>5 min</td>
<td>82.5 (80-84)</td>
<td>83 (74-86)</td>
<td>p>0.05</td>
<td>80 (78-82)</td>
<td>78 (77-80)</td>
<td>p<0.05</td>
</tr>
<tr>
<td>6 min</td>
<td>87 (85-89)</td>
<td>89 (79.75-90)</td>
<td>p>0.05</td>
<td>85.5 (85-86)</td>
<td>85 (80-87)</td>
<td>p<0.05</td>
</tr>
<tr>
<td>7 min</td>
<td>91 (89-93)</td>
<td>92 (84-94)</td>
<td>p>0.05</td>
<td>88 (87-89)</td>
<td>85.5 (84-88.25)</td>
<td>p<0.05</td>
</tr>
<tr>
<td>8 min</td>
<td>94 (92-95)</td>
<td>89.5 (87-95)</td>
<td>p<0.01</td>
<td>91 (90-93)</td>
<td>89 (88-93)</td>
<td>p<0.05</td>
</tr>
<tr>
<td>9 min</td>
<td>96 (95-97)</td>
<td>93 (91-97)</td>
<td>p<0.01</td>
<td>96 (95-97)</td>
<td>94 (92-95)</td>
<td>P<0.01</td>
</tr>
<tr>
<td>10 min</td>
<td>98 (97-99)</td>
<td>97 (96-97)</td>
<td>p<0.01</td>
<td>98 (97.25-99)</td>
<td>97 (95-98)</td>
<td>p<0.01</td>
</tr>
</tbody>
</table>

Also in the present study, there was a delay in the rise of SpO2 in newborns delivered by caesarean section as compared to newborns delivered vaginally especially in the first few minutes of life in both term and preterm group (p≤ 0.01). Both groups acquired ≥90% SpO2 within the 10 minute period. Further the SpO2 values of preterm newborns delivered by caesarean section were found to be on the lower side as compared to the term newborns delivered by caesarean section. This fact is supported by other studies where the mode of delivery significantly affected the progression of SpO2. Rabi et al also concluded that newborns delivered by caesarean section had a 3% lower SpO2 than newborns delivered vaginally. Dawson et al also found that infants born through caesarean section had lower SpO2 measurements than those delivered vaginally in the first 5 minutes after birth. This fact is also supported by Harris et al in their study. On the other hand, there are also some studies which support the fact that the mode of delivery does not affect the SpO2 progression. The present study was conducted with a new generation pulse oximeter with a neonatal probe keeping in mind the guidelines provided by the American Academy of Paediatrics to reduce the motion artefacts and other pitfalls. All the readings of colour and SpO2 were taken by a single observer to minimize inter-observer variations.

This study hypothesized that pulse oximetry is a better index of oxygenation than visual assessment of colour and it has been found that definitely pulse oximetry gives...
a better assessment of oxygenation status in both term and preterm newborns. The unreliability and inter-
observer variation which was there with the use of colour has declined to a great extent with the use of pulse
oximetry. If pulse oximetry would not have been used, these cyanosed newborns might be erroneously given
oxygen. This is particularly useful in Indian set-up
because of a comparative darker skin tone of newborns as compared to the western world and also it is less likely to
be affected by parameters like meconium staining and polycythemia which can affect the colour assessment.

Also, as there is variation in the progression of SpO2 of newborns delivered by normal vaginal route and
caesarean section, we need to have separate sets of reference SpO2 values, based on their gestational age and
mode of delivery, so that we can apply for them separately. Also, some more studies with larger sample
size need to be done to have more conclusive results.
Thus, the present study emphasis on the routine use of
pulse oximetry in the delivery room as per the
recommendations of ILCOR with the simultaneous
assessment of colour, so that our newborns can be saved from the detrimental effects of excess oxygen.

CONCLUSION

Pulse oximetry is a simple, handy, noninvasive, fast,
continuous and accurate way of assessing the oxygen
saturation. It gives a better index of oxygenation than
colour in newborns in Indian set-up. Separate sets of
reference SpO2 should be used for newborns delivered by
normal vaginal route and caesarean section. As pulse
oximeter takes some time to record the SpO2 data, the
need of the time states that some more sophisticated ways
should be devised to have an assessment of newborn
oxygenation status as early as possible after birth.

ACKNOWLEDGEMENTS

Authors would like to thank Dr. G. S. Patel, Ex Dean
Gajra Raja Medical college, Gwalior and Dr. Ajay Gaur,
Associate Professor and Head, Department of Paediatrics,
Gajra Raja Medical College, Gwalior for their immense
support and cooperation during the entire study period.
Authors are also thankful to the Institutional Ethical
Committee for giving permission for the conduct of this
study in the department.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the
Institutional Ethics Committee

REFERENCES

1. Donnell CPF, Kamlin COF, Davis PG, Carlin JB,
Morley CJ. Clinical assessment of infant colour at
2. Perlman JM, Wyllie J, Kattwinkel J, Atkins DL,
resuscitation: International consensus on cardiopulmonary resuscitation and emergency
cardiovascular care science with treatment
3. Kattwinkel J, Perlman JM, Aziz K, Colby C,
resuscitation: 2010 American heart association
4. East CE, Colditz PB, Begg LM, Brennec SP.
Update on intrapartum fetal pulse oximetry. Aust N
5. Dawson JA, Kamlin CO, Wong C, Tepas AB,
Donnell CP, Donath SM, et al. Oxygen saturation
and heart rate during delivery room resuscitation of
infants <30 week’s gestation with air or 100% oxygen. Arch Dis Child Fetal Neonatal Ed.
2009;94(2):87-91.
6. Ballard JL, Novak KK, Driver M. A simplified
score for assessment of fetal maturation of newly
TJ, Donath SM, et al. Defining the reference range
for oxygen saturation for infants after birth.
8. Tiwari S, Tiwari S, Nangia S, Saili A. Oxygen
saturation profile in healthy term neonates in the
9. Donnell CP, Kamlin CO, Davis PG, Morley CJ.
Obtaining pulse oximetry data in neonates: a
randomized crossover study of sensor application
techniques. Arch Dis Child Fetal Neonatal Ed.
10. Rabi Y, Yee W, Chen SY, Singhal N. Oxygen
11. Kamlin CO, Donnell CP, Davis PG, Morley CJ.
Oxygen saturation in healthy infants immediately
12. Harris AP, Sendak MJ, Donham RT. Changes in
arterial oxygen saturation immediately after birth in
13. Dimich I, Singh PP, Adell A, Hendler M,
Sonneenklar N, Jhaveri M. Evaluation of oxygen
saturation monitoring by pulse oximetry in neonates in
oxygen saturation trend in healthy term newborns
within 30 minutes of birth. Indian J Pediatr.
2011;78(7):817-20.