Original Research Article

DOI: http://dx.doi.org/10.18203/2349-3291.ijcp20175588

Impact of education on the knowledge and skills of parents of children with sickle cell disease

Purnima Yadav*, Jayant Vagha

Department of Paediatrics, Jawaharlal Nehru medical college, DMIMSU Wardha, Maharashtra, India

Received: 03 November 2017 **Accepted:** 02 December 2017

*Correspondence:

Dr. Purnima Yadav,

E-mail: punimayadav04@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Sickle cell disease is a haemoglobinopathy that affects millions throughout the world. It leads to poor quality of the life and increased mortality in children and young adults. In Vidarbha, SCD is common and it is pathetic to see children in morbid state dying due to some or the other crisis. Parents must be educated about the nature of the disease, earliest signs of crises and seek help, treat all febrile illnesses promptly. We contemplated that the key to success in the management of such children is parental education and this prompted us to undertake the present study.

Methods: It was interventional study, done in Pediatric SCD clinic done in 2 years. Parent's preexisting knowledge and awareness about sickle cell disease was assessed with the help of questionnaire and OSCE. They were then educated with the help of educational module comprising of pamphlets in Marathi, pictures, and also trained in clinical examination of their child to detect pallor, fever, jaundice, respiratory distress, pulse and splenic enlargement. After intervention posttest and OSCE was conducted again.

Results: The pre-existing knowledge about inheritance, signs and symptoms of sickle cell anemia was high, but parents showed lack in skills of assessment of crises. These skills improved significantly after intervention. There was statistically significant (p<0.05) difference between average pretest and post test scores of each skill tested.

Conclusions: Modular teaching using OSCE helps in improving skills of parents for early detection of sickle cell crises.

Keywords: Education of parents, OSCE, Sickle cell disease

INTRODUCTION

Sickle-cell disease is characterized by red blood cells that assume an abnormal, rigid, sickle shape. Sickling decreases the cells' flexibility and results in a risk of various complications. The sickling occurs because of a mutation in the hemoglobin gene.¹ Mutations occur in the β chain of Hemoglobin whereby the hydrophobic amino acid Valine takes the place of hydrophilic glutamic acid at the sixth amino acid position of the polypeptide chain. This substitution creates a hydrophobic spot on the outside of the protein structure that sticks to the hydrophobic region of an adjacent haemoglobin

molecule's beta chain. This clumping together (polymerization) of Hb S molecules into rigid fibers causes the sickling of red bloodcells.²

The term sickle cell crisis is used to describe several independent acute conditions occurring in patients with sickle cell disease. Sickle cell crises include vaso-occlusive, aplastic, sequestration, hemolytic crises. Most episodes of sickle cell crises last between five and seven days. The commonest of these crises is the Vaso-occlusive.³ Sickle cell disease is a haemoglobinopathy that affects millions throughout the world. Worldwide, approximately 300,000 infants are born with SCD.⁴

According to a research by Jaffer et al, knowledge about sickle cell disease and predisposing factors of sickle cell crises affect attitude (behaviors and beliefs) and therefore, parents/caretakers' knowledge regarding sickle crises preventive measures is positively correlated with their attitude toward preventive practices.

Sickle cell anemia leads to poor quality of the life and increased mortality in children and young adults. The most affected group among children is those between six months to five years of age. This is the age at which the first sickle cell crisis usually appears. Parents must be educated about the nature of the disease. They must be able to recognize the earliest signs of crises and seek help, treat all febrile illnesses promptly. Parents should be instructed on how to palpate the abdomen to detect splenic enlargement, and the importance of observation for pallor, jaundice, and fever. We need to teach patients to seek medical care in certain situations, including persistent fever (>38.3°C), chest pain, shortness of breath, nausea, and vomiting, abdominal pain and persistent headache not experienced previously.

Reinforcement should occur incrementally during the course of ongoing care. Family should be educated on the importance of hydration, diet, outpatient medications, and immunization protocol. In Vidarbha, SCD is common and it's pathetic to see children in morbid state dying due to some or the other crisis. Considering the high burden of sickle cell anemia in Vidarbha region with reported prevalence in Wardha to be 5.7% any effort towards reducing the morbidity and mortality is going to help patients.⁴

METHODS

This was a prospective interventional study carried out at Pediatric SCD clinic at Acharya Vinoba Bhave Rural Hospital (AVBRH), Sawangi (Meghe), Wardha for 2 years.

Study participants were the parents of sickle cell anemia and their wards attending the sickle cell clinic at AVBRH. We included parents of patient with sickle cell trait also.

Exclusion criteria

Terminally ill patients of SCD.

Collection, presentation of data

Parents of children with sickle cell disease, who gave consent for participating in this project and fulfill the inclusion criteria, formed the subjects of study. A predesigned and pre-validated questionnaire (containing both close ended and open-ended questions) was given to them to assess their pre-existing knowledge of various aspects of sickle cell disease. The parents examined their child for fever, jaundice, pallor, respiratory rate, spleen.

This constituted the pre-test knowledge score and Objective Structured Clinical Examination (OSCE) score.

Through an educational module comprising of pictures depicting inheritance pattern, questionnaire, immunization protocols, facilities at sickle cell clinic at our Institute, they were educated about the disease. Parents were trained in clinical examination of their child for pallor, fever, jaundice, respiratory rate and palpation of abdomen to detect splenic enlargement with the help of simplified version of OSCE.

The same questionnaire was given as post-test to them to assess their knowledge of various aspects of SCD and crises and simplified version of OSCE for pallor, fever, jaundice, respiratory rate and splenomegaly was arranged for them to assess their learning of "show how" domain of Millers pyramid which attributes to the competence of the parents.

The data was arranged in Microsoft Excel sheet and descriptive statistics was used to derive the percentages. The comparative analysis of the pre-test and post-tests was done using the paired 't' test using SPSS software version 17.

RESULTS

In the present study, during study period total numbers of 100 parents were enrolled.

Out of these 100 parents, 74 had children with SS pattern and 26 had AS pattern. Out of the 100 couples only one father was SS pattern. 75 of fathers had AS and 24 fathers had AA pattern. while, 10 mothers were having normal electrophoresis pattern. Rest 89 mothers were AS pattern. We had 74 children in the age group of 0-10 years and 26 above11 years.

Table 1: Frequency of sickle cell pattern in patients.

Total no. of patients	Sickle cell pattern	No. of patients	Percentage	
100	"ss" pattern	74	74	
	"as" pattern	26	26	

Table 2: Educational status of responder.

Educational status	Responder		
	Number	Percentage	
No formal education	6	6	
Up to 5 th standard	8	8	
From 6 th to 10 th standard	66	66	
11 th and 12 th standard	13	13	
Graduation or more	7	7	

Out of the 30-responder maximum 66 (66%) parents had education between 6th to 10th standard followed by 13 (13%) parents who had education up to 12th standard. Only 6 parents were uneducated and 7 were graduate.

Table 3: Pre-test for questions 1, 2 and 3.

Question	Yes		No	
number	Number	%	Number	%
1 (n = 100)	65	65	35	35
2 (n = 100)	37	37	63	63
3 (n=100)	33	33	67	67

Table 4 is showing the excerpts of responses to open ended questions

Table 4: Pre-test for questions 11, 12, 14, 16, 17, 18 and 19.

Question	Responses	
Signs of a vaso- occlusive crisis?	Don't know	
Signs of aplastic crisis?	Don't know	
How will you look for pallor?	Don't know	
How will you look for jaundice?	Don't know	
	By touching the forehead	
How will you check for fever?	By touching the abdomen	
	By thermometer	
How will you count the respiratory rate?	Don't know	
How do you check for splenomegaly?	Don't know	

Table 5: Post-test for questions 1, 2 and 3.

Question	Yes		No	
number	Number	%	Number	%
1	97	97	03	03
2	68	68	32	32
3	94	94	06	06

In relation to questions about awareness of sickle cell anemia 65 (65%) were aware and 35 (35%) were unaware. Out of those who were aware of sickle cell only

37 (37%) knew exactly what is sickle cell anemia. 63 (63%) responded wrongly.

After providing education post test scores for question no 1, 2 and 3 (regarding the knowledge) improved significantly. 100% parents were aware about sickle cell and 86.66% had in depth knowledge about it. There was also significant improvement in the responses to the open-ended questions, as depicted in Table 6.

Table 6: Post-test for questions 11, 12, 14, 16, 17, 18 and 19.

Question	Responses		
Signs of a vaso-	Pain in abdomen		
	Pain in joints		
occlusive crisis?	Swelling on hand and foot		
	weakness		
	Weakness		
Signs of aplastic	Fever		
crisis?	Pallor		
	Requires blood transfusion		
TT - '11 - 1 - 1	Paleness in inner part of lower		
	eyelid		
How will you look for pallor?	Paleness on palm and nails		
Tor parior:	Paleness on tongue		
	Hb test		
How will you look	Yellowish discoloration of eye		
How will you look for jaundice?	Yellowish discoloration of urine		
for jaunutee:	Yellowish discoloration of body		
Harry will you aboat	By thermometer		
How will you check for fever?	By touching the forehead with		
TOT TO VCT :	dorsal part of hand		
	In supine position seeing the		
How will you count	abdomen for 1 minute.		
the respiratory rate?	By seeing to and fro movement		
	of abdomen		
How do you check	By pressing the abdomen		
for Splenomegaly?	Don't know		

Table 7: Comparison of pre-and post-test OSCE score, (paired t - test).

OSCE	Test	Mean	N	Std. Deviation	Std. Error Mean	Z-value	p-value
Pallor	Pre-test	1.56	30	1.10	0.20	12.30	0.000
	Post-test	4.76	30	1.19	0.21	12.30	S, p<0.05
Бахуан	Pre-test	1.43	30	0.77	0.14	15.90	0.000
Fever	Post-test	5.36	30	1.47	0.26	15.80	S, p<0.05
Icterus	Pre-test	2.56	30	1.00	0.18	14.72	0.000
	Post-test	5.73	30	1.36	0.24	14.73	S, p<0.05
Dosminotom: noto	Pre-test	1.10	30	1.26	0.23	12.40	0.000
Respiratory rate	Post-test	5.63	30	1.69	0.30	13.40	S, p<0.05
Spleen	Pre-test	0.63	30	1.29	0.23	11 //0	0.000
	Post-test	3.80	30	1.78	0.32	11.48	S, p<0.05

As can be seen from the Table 7 the average pretest score of OSCE for each station was less than the post test score and the calculated p value is <0.0001 which is statically significant.

DISCUSSION

The present study was undertaken with aim of education of parents of children with sickle cell disease to facilitate early diagnosis of crises.

In the present study, out of the 100 parents involved 74 had a child with SS pattern.

Remaining 26 were AS pattern. In this study 30 couples 50 per cent mothers had education up-to high school, 40 per cent father were educated up to higher secondary school. Only one couple was uneducated.

As mentioned above, in the present study there were 52 male participants and rest females further showing that the parents have more predilection for their male children. According to a study done in Niger Delta University, Nigeria (2011) the study showed that sex correlates with the attitude of the parents towards the children with sickle cell disease although most of the participants were females because they interacted with the health facilities since mostly mothers stay with their children in the hospitals or accompany them to the hospitals, most mothers are more caring than fathers regardless of the diagnoses of their children even the prognosis.

Studies done in Vidarbha area also found lower class involvement in both disease and traits Sadat-Ali M et al found in their study that socio-economic status does not influence the outcome in patients with sickle cell disease with respect to pattern and severity of the disease.^{6,7,5}

In this study 61% parents had non-consanguineous marriage and only 31% had consanguineous marriage. Patients with chronic illnesses in sickle cell disease, their parents experience the same level of perceived illness intrusiveness as with other chronic diseases like end stage renal disease and vaso-occlusive crisis as reported by Devins, 2010.

According to a study done in Cleveland, Ohio (2007) quantitative data methods show improvement of sickle cell disease management with questionnaire and suggested that in addition to using traditional approaches to engage a designated caregiver in disease education and management, educational approaches need to include the children, who are critical agents in their own health care and disease management.

The percentage of consanguineous marriage in sickle cell anaemia families is variable according to geographic area. The study by Kamble and Chaturvedi conducted nearby this study area, the percentage of consanguineous

marriage was 7 per cent which is similar to this study.8

An average of about 30 per cent is seen in most Arab countries, through the prevalence of consanguinity range from about 25 per cent in Beirut to 60 percent in Saudi Arabia and 90 per cent in some Bedouin communities in Kuwait and Saudi Arabia. 9-11

The awareness about sickle cell anemia is an important factor to prevent various crises. 65 per cent responders were aware and only 35 per cent new exactly what is sickle cell anemia. This was concluded after conducting pretest in this study.

There was improvement in the knowledge after the intervention. The general awareness about sickle cell anemia was seen in all parents while in depth knowledge was observed in 86 per cent. The parents also realized, the importance of vaccination in sickle cell anemia. In the questionnaire included in this study, parents were asked both open and closed ended questions. After giving information on sickle cell anemia, most of the answers to the closed ended questions were correct. The qualities of responses to open ended questions were improved considerably and the accuracy increased.

The responders had no or poor skills for assessment of sickle cell anemia. Their judgment and physical assessment of signs seen in sickle cell anemia and crises improved. Physical assessment of signs was checked through objective structured clinical examination

As can be seen in the results, average pretest score of OSCE for each station was less than the post test score and the calculated p value is <0.0001 which is statically significant.

It was shown in many studies that the preexisting knowledge of the parents of children of sickle cell anemia improved. 12-15

A study with large sample size can provide much more evidence for parental intervention in management of sickle cell anemia.

In the present study, parents of children suffering from sickle cell anemia were selected. A pretest was prepared to test their knowledge and skills related with management of sickle cell anemia. The parents then went through the various modes of teaching to explain and understand the disease process. The knowledge of sickle cell anaemia and clinical skills assessed by using observed structured clinical examination method. The results were compared with the post-test.

There was increase in the knowledge of all parents about sickle cell disease. About 86% of the parents understood in depth idea of the disease. The response to the questions about sickle cell anemia improved considerably. The parents used proper and precise words for describing the

signs and symptoms of crises. The answers to the questions which were open type were complete and elaborative.

The acquisition of skills like assessment of pallor, icterus, fever, respiratory rate and splenomegaly was significant.

CONCLUSION

The crises in sickle cell anemia are prevented by regular administration of zinc, folic acid, immunization and proper follow up care. Parental awareness, skills in assessing their child helps in early intervention.

The sickle cell anemia patients are at lifetime risk of crises. The crises are precipitated by minor illness. So, early recognition is priority.

The study has stressed the role of parents in the management of sickle cell anemia. The attacks of crises if prevented will reduce the morbidity and mortality associated with sickle cell anemia.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

REFERENCES

- 1. Platt OS, Orkin SH, Dover G, Beardsley GP, Miller B, Nathan DG. Hydroxyurea enhances fetalhemoglobin production in sickle cell anemia. J Clin Invest. 1984;74(2):652-6.
- 2. Koch A, Yang Q, Olney RS. Hemoglobin S Allele and Sickle Cell Disease. Am J Epi. 1998;151(9):839-45.
- 3. Muscari ME. Pediatric Nursing. 4th Ed. Lippioncott Williams and Wilkins, USA; 2005.
- 4. Deshmukh P, Garg BS, Garg N, Prajapati NC, Bharambe MS. Prevalence of sickle cell disorders in rural Wardha. Indian J Com Med. 2006;31(1):26-7.

- 5. Sadat-Ali M, Al Habden. Has improvement in economic status changed the pattern and severity of bone and joint complications in sickle cell disease. Ind J Orthol. 2003;37(3):47-9.
- 6. Mukherjee MB. Incidence of sickle cell disease in Nagpur. Ind J Haematol Bld Transfusion. 1994;12:219-24.
- 7. Patel AB, Athavale AM. Sickle cell disease in central India. Indian J Pediatr. 2004;71(9):789-93.
- 8. Kamble M, Chatruvedi P. Epidemiology of sickle cell disease in a rural hospital of Central India. Indian Pediatr. 2000;37:391-6.
- 9. Khlat M, Khudr A. Cousine marriages in Beirut lebanan is the pattern changing? J Biosoc Sci. 1984:16:369-73.
- 10. AL Roshoud R, Farid S. Kuwait health survey Kuwait; Ministry of Health Publication; 1991.
- 11. Panter-BC. Parental responses to consanguinity and genetic disease in Saudi Arabia. Soc Sci Med. 1991;33:1295-302.
- 12. Vasava B, Chudasama R, Godara N, Srivastava R. Prevalence of sickle cell disease in tribal adolescents of the South Gujarat region, India. Internet J Trop Med. 2008;6(1):1-7.
- 13. Mukherjee K. Study of gutka consumption and its determinants among secondary school male students in Mumbai. Ind J Comm Med. 2006;31:177.
- 14. Sahu T, Sahani NC, Das S, Sahu SK. Sickle cell anemia in tribal children of Gajapati district in south Orissa. Ind J Comm Med. 2003;28:180-3.
- 15. Ambekar SS, Phadke MA, Mokashi GD, Bankar MP, Khedkar VA, Venkat V, et al. Pattern of hemoglobinopathies in western Maharashtra. Indian Pediatr. 2001;38:530-4.

Cite this article as: Yadav P, Vagha J. Impact of education on the knowledge and skills of parents of children with sickle cell disease. Int J Contemp Pediatr 2018;5:209-13.